Skip to main content
Log in

A New Multi-Copper-Substituted Tetramer Tungstoantimonate: Synthesis, Photocatalytic and Electrochemical Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Under hydrothermal conditions, a new “S”-shaped Cu-substituted tetramer tungstoantimonate, HKNa2(H2en)6[Cu(en)(H2O)]2[KNaCu3(H2O)7(B-a-SbW9O33)2]2⋅16H2O (1, en = 1,2-ethylenediamine) was synthesized in reactions of the Na9[SbW9O33]·19.5H2O precursor with CuCl2⋅2H2O and potassium acetate in the presence of en and characterized by IR spectrum, thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction, respectively. Polyoxoanion 1 consists of two asymmetric sandwich-type polyanions {KNaCu3(H2O)7(B-a-SbW9O33)2} linked by two structurally equivalent [Cu4(en)(H2O)]2+ bridges. The electrochemical properties and photocatalytic activities have been investigated, displaying outstanding photocatalytic and electrocatalytic activities for the photodegradation of MB and H2O2/NO2/BrO3 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. P. Yang, R. F. Liu, K. Li, B. Yu, and C. W. Hu (2020). Chinese. Chem. Lett. 31, 3233.

    CAS  Google Scholar 

  2. S. S. Wang and G. Y. Yang (2015). Chem. Rev. 115, 4893.

    Article  CAS  Google Scholar 

  3. J. X. Liu, X. B. Zhang, Y. L. Li, S. L. Huang, and G. Y. Yang (2020). Coord. Chem. Rev. 414, 213260.

    Article  CAS  Google Scholar 

  4. R. Ma, N. F. Liu, T. T. Lin, T. B. Zhao, S. L. Huang, and G. Y. Yang (2020). J. Mater. Chem. A 8, 8548.

    Article  CAS  Google Scholar 

  5. S. T. Zheng and G. Y. Yang (2012). Chem. Soc. Rev. 41, 7623.

    Article  CAS  Google Scholar 

  6. H. J. Lv, Y. V. Geletii, C. C. Zhao, J. W. Vickers, G. B. Zhu, Z. Luo, J. Song, T. Q. Lian, D. G. Musaev, and C. L. Hill (2012). Chem. Soc. Rev. 41, 7572.

    Article  CAS  Google Scholar 

  7. W. H. Fang, W. D. Wang, and G. Y. Yang (2015). Dalton Trans. 44, 12546.

    Article  CAS  Google Scholar 

  8. I. Loose, E. Droste, M. Bosing, H. Pohlmann, M. H. Dickman, C. Rosu, M. T. Pope, and B. Krebs (1999). Inorg. Chem. 38, 2688.

    Article  CAS  Google Scholar 

  9. G. Rousseau, O. Oms, A. Dolbecq, J. Marrot, and P. Mialane (2011). Inorg. Chem. 50, 7376.

    Article  CAS  Google Scholar 

  10. S. S. Mal and U. Kortz (2005). Angew. Chem. Int. Ed. 44, 3777.

    Article  CAS  Google Scholar 

  11. Z. Luo, P. Kögerler, R. Cao, I. Hakim, and C. L. Hill (2008). Dalton Trans. 1, 54.

    Article  Google Scholar 

  12. H. Liu, C. Qin, Y. G. Wei, L. Xu, G. G. Gao, F. Y. Li, and X. S. Qu (2008). Inorg. Chem. 47, 4166.

    Article  CAS  Google Scholar 

  13. B. Li, J. W. Zhao, S. T. Zheng, and G. Y. Yang (2009). Inorg. Chem. 48, 8294.

    Article  CAS  Google Scholar 

  14. J. W. Zhao, H. P. Jia, J. Zhang, S. T. Zheng, and G. Y. Yang (2007). Chem.-Eur. J. 13, 10030.

    Article  CAS  Google Scholar 

  15. J. W. Zhao, S. T. Zheng, Z. H. Li, and G. Y. Yang (2009). Dalton Trans. 8, 1300.

    Article  Google Scholar 

  16. Z. M. Zhang, Y. F. Qi, C. Qin, Y. G. Li, E. B. Wang, X. L. Wang, Z. M. Su, and L. Xu (2007). Inorg. Chem. 46, 8162.

    Article  CAS  Google Scholar 

  17. W. C. Chen, S. T. Wu, C. Qin, X. L. Wang, K. Z. Shao, Z. M. Su, and E. B. Wang (2018). Dalton Trans. 47, 16403.

    Article  CAS  Google Scholar 

  18. M. Bosing, I. Loose, H. Pohlmann, and B. Krebs (1997). Chem.-Eur. J. 3, 1232.

    Article  CAS  Google Scholar 

  19. G. M. Sheldrick, SHELXL97, Program for Crystal Structure Solution, (University of Göttingen, Germany, 1997)

  20. S. T. Zheng and G. J. Cao (2015). Chem. Commun. 51, 2048.

    Article  Google Scholar 

  21. H. Naruke, J. Iijima, and T. Sanji (2011). Inorg. Chem. 50, 7535.

    Article  CAS  Google Scholar 

  22. I. V. Kalinina, E. V. Peresypkina, N. V. Izarova, F. M. Nkala, U. Kortz, N. B. Kompankov, and M. N. Sokolov (2014). Inorg. Chem. 53, 2076.

    Article  CAS  Google Scholar 

  23. F. Bannani, S. Floquet, N. Leclerc-Laronze, M. Haouas, F. Taulelle, J. Marrot, P. Köerler, and E. Cadot (2012). J. Am. Chem. Soc. 134, 19342.

    Article  CAS  Google Scholar 

  24. I. D. Brown and D. Altermatt (1985). Acta Crystallogr. B 41, 244.

    Article  Google Scholar 

  25. L. Lisnard, P. Mialane, A. Dolbecq, J. Marrot, J. Clemente-Juan, E. Coronado, B. Keita, P. Oliveira, L. Nadjo, and F. Sécheresse (2007). Chem.-Eur. J. 13, 3525.

    Article  CAS  Google Scholar 

  26. N. H. Nsouli, A. H. Ismail, I. S. Helgadottir, M. H. Dickman, J. M. Clemente-Juan, and U. Kortz (2009). Inorg. Chem. 48, 5884.

    Article  CAS  Google Scholar 

  27. J. W. Zhao, Q. X. Han, D. Y. Shi, L. J. Chen, P. T. Ma, J. P. Wang, and J. Y. Niu (2011). J. Solid State Chem. 184, 2756.

    Article  CAS  Google Scholar 

  28. R. S. Winter, J. M. Cameron, and L. Cronin (2014). J. Am. Chem. Soc. 136, 12753.

    Article  CAS  Google Scholar 

  29. J. J. Sun, Y. L. Wang, and G. Y. Yang (2020). CrystEngComm. 22, 8387.

    Article  CAS  Google Scholar 

  30. J. J. Sun, Y. L. Wang, X. Y. Li, and G. Y. Yang (2020). J. Coord. Chem. 73, 2499.

    Article  CAS  Google Scholar 

  31. M. Sadakane and E. Steckhan (1998). Chem. Rev. 98, 219.

    Article  CAS  Google Scholar 

  32. M. Ibrahim, Y. Xiang, B. S. Bassil, Y. H. Lan, A. K. Powell, P. D. Oliveira, B. Keita, and U. Kortz (2013). Inorg. Chem. 52, 8399.

    Article  CAS  Google Scholar 

  33. Z. Zhang, Y. L. Wang, H. L. Li, K. N. Sun, and G. Y. Yang (2013). CrystEngComm. 21, 2641.

    Article  Google Scholar 

  34. M. Ibrahim, A. Haider, Y. X. Xiang, B. S. Bassil, A. M. Carey, L. Rullik, G. B. Jameson, F. Doungmene, I. M. Mbomekallé, P. Oliveira, V. Mereacre, G. E. Kostakis, A. K. Powell, and U. Kortz (2015). Inorg. Chem. 54, 6136.

    Article  CAS  Google Scholar 

  35. S. G. Mitchell, S. Khanra, H. N. Miras, T. Boyd, D. L. Long, and L. Cronin (2009). Chem. Commun. 19, 2712.

    Article  Google Scholar 

  36. Z. Zhang, H. L. Li, Y. L. Wang, and G. Y. Yang (2019). Inorg. Chem. 58, 2372.

    Article  CAS  Google Scholar 

  37. Z. Zhang, Y. L. Wang, Y. Liu, S. L. Huang, and G. Y. Yang (2020). Nanoscale. 12, 18333.

    Article  CAS  Google Scholar 

  38. B. Keita, A. Belhouaria, L. Nadjo, and R. J. Contant (2020). Electroanal. Chem. 381, 243.

    Article  Google Scholar 

  39. Z. Zhang, K. N. Sun, and G. Y. Yang (2019). ChemistrySelect. 4, 7559.

    Article  CAS  Google Scholar 

  40. X. L. Wang, H. L. Hu, A. X. Tian, H. Y. Lin, and J. Li (2010). Inorg. Chem. 49, 10299.

    Article  CAS  Google Scholar 

  41. X. L. Wang, Z. H. Chang, H. Y. Lin, C. Xu, J. Luan, G. C. Liu, and A. X. Tian (2015). RSC Adv. 5, 35535.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (No. 21901018), the China Postdoctoral Science Foundation funded project (No. 2019M650498) and the Doctoral Scientific Research Foundation of Bohai University (No. 0520bs027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yang, L., Xu, N. et al. A New Multi-Copper-Substituted Tetramer Tungstoantimonate: Synthesis, Photocatalytic and Electrochemical Properties. J Clust Sci 33, 1249–1255 (2022). https://doi.org/10.1007/s10876-021-02059-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02059-8

Keywords

Navigation