Skip to main content
Log in

Bioactive borosilicate glass scaffolds: in vitro degradation and bioactivity behaviors

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive borosilicate glass scaffolds with the pores of several hundred micrometers and a competent compressive strength were prepared through replication method. The in vitro degradation and bioactivity behaviors of the scaffolds have been investigated by immersing the scaffolds statically in diluted phosphate solution at 37°C, up to 360 h. To monitor the degradation progress of the scaffolds, the amount of leaching elements from the scaffolds were determined by ICP-AES. The XRD and SEM results reveal that, during the degradation of scaffolds, the borosilicate scaffolds converted to hydroxyapatite. The compressive strength of the scaffolds decreased during degradation, in the way that can be well predicted by the degradation products, or the leachates, from the scaffolds. MTT assay results demonstrate that the degradation products have little, if any, inhibition effect on the cell proliferation, when diluted to a certain concentration ([B] <2.690 and pH value at neutral level). The study shows that borosilicate glass scaffold could be a promising candidate for bone tissue engineering material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.W. Hutmacher, Biomaterials 21, 2529 (2000). doi:10.1016/S0142-9612(00)00121-6

    Article  PubMed  CAS  Google Scholar 

  2. L.L. Hench, J. Mater. Sci.: Mater. Med. 17, 967 (2006). doi:10.1007/s10856-006-0432-z

    Article  CAS  Google Scholar 

  3. J.R. Jones, L.M. Ehrenfried, L.L. Hench, Biomaterials 27, 964 (2006). doi:10.1016/j.biomaterials.2005.07.017

    Article  PubMed  CAS  Google Scholar 

  4. Q.Z. Chen, K. Rezwan, V. Francon, Acta Biomater. 3, 551 (2007). doi:10.1016/j.actbio.2007.01.008

    Article  PubMed  CAS  Google Scholar 

  5. S. Ni, J. Chang, L. Chou, J. Biomed. Mater. Res. (2005). doi:10.1002/jbm.a.30525

  6. H.M, Curr. Opin. Solid State Mater. Sci. (2003). doi:10.1016/j.cossms.2003.09.014

  7. M. Hamadouche, A. Meunier, D.C. Greenspan, C. Blanchat, J.P. Zhong, G.P.L. Torre, L. Sedel, J. Biomed. Mater. Res. 54, 560 (2001). doi:10.1002/1097-4636(20010315)54:4<560::AID-JBM130>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  8. A.H. Yao, D.P. Wang, W.H. Huang, F. Qiang, M.N. Rahaman, D.E. Day, J. Am. Ceram. Soc. 90, 303 (2007). doi:10.1111/j.1551-2916.2006.01358.x

    Article  CAS  Google Scholar 

  9. W.H. Huang, M.N. Rahaman, D.E. Day, B.A. Miller, J. Mater. Sci. Mater. Med. (2008). doi:10.1007/s10856-008-3554-7

  10. W. Liang, M.N. Rahaman, D.E. Day, N.W. Marion, G.C. Riley, J.J. Mao, J. Non-Cryst. Solids 354, 1690 (2008). doi:10.1016/j.jnoncrysol.2007.10.003

    Article  ADS  CAS  Google Scholar 

  11. J. Ning, A.H. Yao, D.P. Wang, W.H. Huang, H.L. Fu, X. Liu, X.Q. Jiang, X.L. Zhang, Mater. Lett. 61, 5223 (2007). doi:10.1016/j.matlet.2007.04.089

    Article  CAS  Google Scholar 

  12. W. Huang, D.E. Day, K. Kittiratanapiboon, M.N. Rahaman, J. Mater. Sci.: Mater. Med. 17, 583 (2006). doi:10.1007/s10856-006-9220-z

    Article  CAS  Google Scholar 

  13. N.W. Marion, W. Liang, G.C. Reilly, D.E. Day, M.N. Rahaman, J.J. Mao, Mech. Adv. Mater. Struct. 12, 239 (2005). doi:10.1080/15376490590928615

    Article  CAS  Google Scholar 

  14. X. Liu, W.H. Huang, H.L. Fu, A.H. Yao, D.P. Wang, H.B. Pan, W.W. Lu, J. Mater. Sci. Mater. Med. (2008). doi:10.1007/s10856-008-3582-3

  15. J.E. Babensee, J.M. Anderson, L.V. Melntire, A.G. Mikos, Adv. Drug Deliv. Rev. 33, 111 (1998). doi:10.1016/S0169-409X(98)00023-4

    Article  PubMed  CAS  Google Scholar 

  16. W.H. Huang, D.E. Day, M.N. Rahaman, J. Am. Ceram. Soc. 90, 838 (2007). doi:10.1111/j.1551-2916.2007.01511.x

    Article  CAS  Google Scholar 

  17. Y. Wan, A.X. Yu, H. Wu, Z.X. Wang, D.J. Wen, J. Mater. Sci.: Mater. Med. 16, 1017 (2005). doi:10.1007/s10856-005-4756-x

    Article  CAS  Google Scholar 

  18. W. Liang, C. Russel, J. Mater. Sci. 41, 3787 (2006). doi:10.1007/s10853-006-2469-2

    Article  ADS  CAS  Google Scholar 

  19. F. Devreux, A. Ledieu, P. Barboux, Y. Minet, J. Non-Cryst. Solids 343, 13 (2004). doi:10.1016/j.jnoncrysol.2004.06.007

    Article  ADS  CAS  Google Scholar 

  20. A. Bigi, G.A. Bigi, G. Cojazzi, S. Panzavolta, A. Ripamonti, N. Roveri, M. Romanello, K.N. Suarez, L. Moro, J. Inorg. Biochem. 68, 45 (1997). doi:10.1016/S0162-0134(97)00007-X

    Article  PubMed  CAS  Google Scholar 

  21. K. Rezwan, Q.Z. Chen, J.J. Blaker et al., Biomaterials 27, 3413 (2006). doi:10.1016/j.biomaterials.2006.01.039

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Commission of Shanghai Municipality, China, under Project (Grant No. 05DJ14006) (Grant No. 08441900500) and Hong Kong RGC: 71437/07E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhai Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Huang, W., Fu, H. et al. Bioactive borosilicate glass scaffolds: in vitro degradation and bioactivity behaviors. J Mater Sci: Mater Med 20, 1237–1243 (2009). https://doi.org/10.1007/s10856-009-3691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3691-7

Keywords

Navigation