Skip to main content
Log in

Hydrogel–elastomer composite biomaterials: 4. Experimental optimization of hydrogel–elastomer composite fibers for use as a wound dressing

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

We report a novel 3-D cavity wound dressing based on a hydrogel–elastomer Interpenetrating Polymer Network (IPN) fabricated into an open-mesh architecture. IPN fibers used to form the dressing were produced by a wet spinning method and optimized in two steps. A factorial experiment was first conducted to identify key parameters that controlled fiber properties. We observed that gelatin wt% played a major role in determining fiber yield, swelling, strength and stability. Other contributing factors included coagulation solution composition, gelatin type, and pre- and post-UV irradiation time. The key factors were then further evaluated individually to achieve a condition that provided a combination of good swelling, mechanical properties and stability. The concentration of the gelatin/HydroThaneTM extrusion solution significantly affected fiber formation and properties, presumably due to the changes in solution viscosity. The effects of pre-UV irradiation were also ascribed to its impact on the solution viscosity and became negligible at higher concentrations when viscosity is mainly controlled by concentration. The composition of the coagulation bath influenced the fiber swelling and wet stress. These results, taken together with our previous studies, suggest that our biomaterial would provide a combination of mechanical and swelling properties suitable for wound dressing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. JAYARAMAN, M. KOTAKI, Y. ZHANG, X. MO, and S. RAMAKRISHNA, J. Nanosci. Nanotechnol. 4 (2004) 52

    CAS  Google Scholar 

  2. Z. MA, M. KOTAKI, R. INAI, and S. RAMAKRISHN, Tissue Eng. 11 (2005) 101

    Article  Google Scholar 

  3. Y. ZHANG, C. T. LIM, S. RAMAKRISHNA, and Z. M. HUANG, J. Mater. Sci. Mater. Med. 16 (2005) 933

    Article  CAS  Google Scholar 

  4. K. TUZLAKOGLU, C. M. ALVES, J. F. MANO, and R. L. REIS, Macromol. Biosci. 4 (2004) 811

    Article  CAS  Google Scholar 

  5. M. LI, M. J. MONDRINOS, M. R. GANDHI, F. K. KO, A. S. WEISS, and P. I. LELKES, Biomaterials 26 (2006) 5999

    Article  CAS  Google Scholar 

  6. S. YAMANE, N. IWASAKI, T. MAJIMA, T. FUNAKOSHI, T. MASUKO, K. HARADA, A. MINAMI, K. MONDE, and S. NISHIMURA, Biomaterials 26 (2005) 611

    Article  CAS  Google Scholar 

  7. H. BAK, A. AFOKE, A. J. MCLEOD, R. BROWN, P. A. SHAMLOU, and P. DUNNILL, Chem. Eng. Sci. 57 (2002) 913

    Article  CAS  Google Scholar 

  8. C.-W. NAM, Y.-H. KIM, and S.-W. KO, J. Appl. Polym. Sci. 82 (2001) 1620

    Article  CAS  Google Scholar 

  9. L. FAN, Y. DU, R. HUANG, Q. WANG, X. WANG, and L. ZHANG, J. Appl. Polym. Sci. 96 (2006) 1625

    Article  CAS  Google Scholar 

  10. H. ZHENG, Z. A. TAN, X. JIAN, and R. Z. YUAN, Key Eng. Mater. 249 (2003) 437

    Article  CAS  Google Scholar 

  11. Y. ZHANG, H. QUYANG, C. T. LIM, S. RAMAKRISHNA, and Z.-M. HUANG, J. Biomed. Mater. Res. 72B (2005) 156

    Article  CAS  Google Scholar 

  12. J. J. STANKUS, J. GUAN, and W. R. WAGNER, J. Biomed. Mater. Res. 70A (2004) 603

    Article  CAS  Google Scholar 

  13. H. T. PENG, L. MARTINEAU, and P. N. SHEK, J. Mater. Sci. Mater. Med. 18 (2007) 975

    Article  CAS  Google Scholar 

  14. H. T. PENG, M. MOK, L. MARTINEAU, and P. N. SHEK, J. Mater. Sci. Mater. Med. 18 (2007) 1025

    Article  CAS  Google Scholar 

  15. H. T. PENG, L. MARTINEAU, and P. N. SHEK, J. Mater. Sci. Mater. Med. (accepted for publication)

  16. S. B. LEE, H. W. JEON, Y. W. LEE, Y. M. LEE, K. W. SONG, M. H. PARK, Y. S. NAM, and H. C. AHN, Biomaterials 24 (2003) 2503

    Article  CAS  Google Scholar 

  17. S. YOUNG , M. WONG, Y. TABATA, and A. G. MIKOS, J. Control Release 109 (2005) 256

    Article  CAS  Google Scholar 

  18. K. B. DJAGNY, Z. WANG, and S. Y. XU, Crit. Rev. Food Sci. 41 (2001) 481

    Article  CAS  Google Scholar 

  19. R. J. ZDRAHALA and I. J. ZDRAHALA, J. Biomater. Appl. 14 (1999) 67

    CAS  Google Scholar 

  20. M. NAGURA, H. YOKOTA, M. IKEURA, Y. GOTOH, and Y. OHKOSHI, Polym. J. 34 (2002) 761

    Article  CAS  Google Scholar 

  21. K. GISSELFÄLT, B. EDBERG, and P. FLODIN, Biomacromolecules 3 (2002) 951

    Article  CAS  Google Scholar 

  22. M.-S. KHIL, D.-I. CHA, H.-Y. KIM, I.-S. KIM, and N. BHATTARAI, J. Biomed. Mater. Res. 67B (2003) 675

    Article  CAS  Google Scholar 

  23. R. YANG, R. R. MATHER, and A. F. FOTHERINGHAM, J. Appl. Polym. Sci. 96 (2005) 144

    Article  CAS  Google Scholar 

  24. Available at http://www.itl.nist.gov/div898/handbook/pri/section3/pri334.htm accessed April 22, 2005

  25. Available at http://www.me.mtu.edu/~jwsuther/doe/notes/doe_ch10.pdf accessed April 20, 2005

  26. E. MARSANO, M. CANETTI, G. CONIO, P. CORSINI, and G. FREDDI, J. Appl. Polym. Sci. 104 (2007) 2187

    Article  CAS  Google Scholar 

  27. L. D. BELLINCAMPI and M. G. DUNN, J. Appl. Polym. Sci. 63 (1997) 1493

    Article  CAS  Google Scholar 

  28. C.-W. NAM, Y.-H. KIM, and S.-W. KO, J. Appl. Polym. Sci. 74 (1999) 2258

    Article  CAS  Google Scholar 

  29. J. M. GARCIA, E. CHAMBERS IV, Z. MATTA, and M. CLARK, Dysphagia 20 (2005) 325

    Article  Google Scholar 

  30. R. G. MILLER, C. Q. BOWLES, C. C. CHAPPELOW, and J. D. EICK, J. Biomed. Mater. Res. 41 (1998) 237

    Article  CAS  Google Scholar 

  31. S. H. TEOH, Z. G. TANG, and S. RAMAKRISHNA, J. Mater. Sci. Mater. Med. 10 (1999) 343

    Article  CAS  Google Scholar 

  32. J. FEI, Z. ZHANG, L. ZHONG, and L. GU, J. Appl. Polym. Sci. 85 (2002) 2423

    Article  CAS  Google Scholar 

  33. J. S. TSAI and W. C. SU, J. Mater. Sci. Lett. 10 (1991) 1253

    Article  CAS  Google Scholar 

  34. H. BARANI and S. H. BAHRAMI, J. Appl. Polym. Sci. 103 (2007) 2000

    Article  CAS  Google Scholar 

  35. I. C. UM, C. S. KI, H. Y. KWEON, K. G. LEE, D. W. IHM, and Y. H. PARK, Intern. J. Biol. Macromol. 34 (2004) 107

    Article  CAS  Google Scholar 

  36. S.-W. HA, A. E. TONELLI, and S. M. HUDSON, Biomacromolecules 6 (2005) 1722

    Article  CAS  Google Scholar 

  37. http://www.itl.nist.gov/div898/handbook/pri/section3/eqns/2to6m2.txt accessed November 12, 2004

  38. Available at http://www.isixsigma.com/library/content/c020429a.asp accessed November 12, 2004

  39. M. YUAN, V. R. JOSEPH, and Y. LIN, Technometrics, in press (available at http://www2.isye.gatech.edu/statistics/papers/05-24.pdf accessed May 28, 2007)

  40. Y. S. OH, S. LEE, S. K. MIN, Y. J. SHIN, and B. K. KIM, J. Appl. Polym. Sci. 64 (1997) 1937

    Article  CAS  Google Scholar 

  41. I. C. UM, H. Y. KWEON, K. G. LEE, D. W. IHM, J.-H. LEE, and Y. H. PARK, Intern. J. Biol. Macromol. 34 (2004) 89

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Ms. Michelle Mok and Mr. Doug Saunders for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry T. Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, H.T., Martineau, L. & Hung, A. Hydrogel–elastomer composite biomaterials: 4. Experimental optimization of hydrogel–elastomer composite fibers for use as a wound dressing. J Mater Sci: Mater Med 19, 1803–1813 (2008). https://doi.org/10.1007/s10856-007-3324-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3324-y

Keywords

Navigation