Skip to main content
Log in

Fabrication of gelatin-poly(epichlorohydrin-co-ethylene oxide) fiber scaffolds by Forcespinning® for tissue engineering and drug release

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Gelatin/poly(epichlorohydrin-co-ethylene oxide) [GL: PECO] composites are synthesized in a one-step process by the incorporation of elastic PECO and diclofenac. [GL: PECO] fibers are prepared by Forcespinning®. GL: PECO fibers are capable of diclofenac, by conjugation via a labile amide linkage. Fourier transform infrared spectroscopy (FTIR) results confirmed the chemical reactions and hydrogen bonds between gelatin, PECO, and diclofenac. Diclofenac drug release from GL: PECO fibers are measured for 15 days and prolonged drug release is observed. The cell viability is studied with NIH/3T3 and excellent results are observed. The sustained drug release and cytotoxicity results reveal that GL: PECO fibers could be promising substitutes for skin tissue engineering, wound healing, and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. S.W. Choi, Y. Zhang, and Y. Xia: Three-dimensional scaffolds for tissue engineering: the importance of uniformity in pore size and structure. Langmuir 26, 19001 (2010).

    Article  CAS  Google Scholar 

  2. F.J. O’Brien: Biomater & scaffolds for tissue engineering. Mater. Today 14, 88 (2011).

    Article  Google Scholar 

  3. M. Erencia, F. Cano, J.A. Tornero, J. Macanás, and F. Carrillo: Resolving the electrospinnability zones and diameter prediction for the electrospinning of the gelatin/water/acetic acid system. Langmuir 30, 7198 (2014).

    Article  CAS  Google Scholar 

  4. K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. de Hoyos, H. Vasquez, and K. Lozano: Electrospinning to Forcespinning TM. Mater. Today 13, 12 (2010).

    Article  CAS  Google Scholar 

  5. A. Townsend-Nicholson and S.N. Jayasinghe: Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7, 3364 (2006).

    Article  CAS  Google Scholar 

  6. S.N. Jayasinghe: Cell electrospinning: a novel tool for functionalizing fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine. Analyst 138, 2215 (2013).

    Article  CAS  Google Scholar 

  7. S. Padron, A. Fuentes, D. Caruntu, and K. Lozano: Experimental study of nanofiber production through forcespinning. J. Appl. Phys. 113, 024318 (2013).

    Article  Google Scholar 

  8. S.I. Jeong, M.D. Krebs, C.A. Bonino, S.A. Khan, and E. Alsberg: Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol. Biosci. 10, 934 (2010).

    Article  CAS  Google Scholar 

  9. V.T. Nguyen, S.C. Ko, G.W. Oh, S.Y. Heo, Y.J. Jeon, W.S. Park, I.W. Choi, S.W. Choi, and W.K. Jung: Anti-inflammatory effects of sodium alginate/gelatine porous scaffolds merged with fucoidan in murine microglial BV2 cells. Int. J. Biol. Macromol. 93, 1620 (2016).

    Article  CAS  Google Scholar 

  10. Y. Liu and M.B. Chan-Park: A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials 31, 1158 (2010).

    Article  CAS  Google Scholar 

  11. X. Wu, Y. Liu, X. Li, P. Wen, Y. Zhang, Y. Long, X. Wang, Y. Guo, F. Xing, and J. Gao: Preparation of aligned porous gelatine scaffolds by unidirectionalfreeze-drying method. Acta Biomater. 6, 1167 (2010).

    Article  CAS  Google Scholar 

  12. J. Jafari, S.H. Emami, A. Samadikuchaksaraei, M.A. Bahar, and F. Gorjipour: Electrospun chitosan- gelatin nanofiberous scaffold: Fabrication and in vitro evaluation. Biomed. Mater. Eng. 21, 99 (2011).

    CAS  Google Scholar 

  13. L.G. Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H.N. Esfahani, and S. Ramakrishna: Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29, 4532 (2008).

    Article  Google Scholar 

  14. M. Cheng, J. Deng, F. Yang, Y. Gong, N. Zhao, and X. Zhang: Study on physical properties and nerve cell affinity of composite films from chitosan and gelatine solutions. Biomaterials 24, 2871 (2003).

    Article  CAS  Google Scholar 

  15. D. Li, W. Chen, B. Sun, H. Li, T. Wu, Q. Ke, C. Huang, H. Ei-Hamshary, S.S. Al-Deyab, and X. Mo: A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids Surf. B 146, 632 (2016).

    Article  CAS  Google Scholar 

  16. Y.C. Jiang, L. Jiang, A. Huang, X.F. Wang, Q. Li, and L.S. Turng: Electrospun polycaprolactone/gelatin composites with enhanced cell-matrix interactions as blood vessel endothelial layer scaffolds. Mater. Sci. Eng. C 71, 901 (2017).

    Article  CAS  Google Scholar 

  17. M.A. Soto-Oviedo and M.A. De Paoli: Dynamic vulcanization of thermoplastic elastomers based on poly(epichlorohydrin-co-ethylene oxide) and polypropylene. Polym. Bull. 56, 75 (2006).

    Article  CAS  Google Scholar 

  18. S.C.G. Da Costa, M.D.C. Goncalves, and M.I. Felisberti: Blends of polyamide 6 and epichlorohydrin elastomers. I. Graft copolymerization in the melt blending. J. Appl. Polym. Sci. 72, 1827 (1999).

    Article  Google Scholar 

  19. A.L. Juliana and M.I. Felisberti: Poly(hydroxybutyrate) and epichlorohydrin elastomers blends: phase behavior and morphology. Eur. Polym. J. 42, 602 (2006).

    Article  Google Scholar 

  20. K.Y. Zhang, X.H. Ran, X.M. Wang, C.Y. Han, L.J. Han, X. Wen, Y. Zhuang, and L. Dong: Improvement in toughness and crystallization of poly(L-lactic acid) by melt blending with poly(epichlorohydrin-co-ethylene oxide). Polym. Eng. Sci. 51, 2370 (2011).

    Article  CAS  Google Scholar 

  21. M.A. Souza, K.Y. Sakamoto, and L.H.C. Mattoso: Release of the diclofenac sodium by nanofibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Obtained from electrospinning and solution blow spinning. J. Nanomater. 2014, 1 (2014).

    Article  Google Scholar 

  22. D.L. Cooper and S. Harirforoosh: Design and optimization of PLGA-based diclofenac loaded nanoparticles. PLoS ONE 9, e87326 (2014).

    Article  Google Scholar 

  23. J.L. Italia, M.M. Yahya, D. Singh, and M.N. Ravi Kumar: Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm. Res. 26, 1324 (2009).

    Article  CAS  Google Scholar 

  24. N. Dehar, A. Gupta, and G. Singh: Comparative study of the ocular efficacy and safety of diclofenac sodium (0.1%) ophthalmic solution with that of ketorolac tromethamine (0.5%) ophthalmic solution in patients with acute seasonal allergic conjunctivitis. Int. J. Appl. Basic Med. Res. 2, 25 (2012).

    Article  CAS  Google Scholar 

  25. C.H. Kim, M.S. Khil, H.Y. Kim, H.U. Lee, and K.Y. Jahng: An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J. Biomed. Mater. Res. B, Appl. Biomater. 78(2), 283 (2006).

    Article  Google Scholar 

  26. N. Bolgen, I. Vargel, P. Korkusuz, Y.Z. Menceloglu, and E. Piskin: In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J. Biomed. Mater. Res. B, Appl. Biomater. 81, 530 (2007).

    Article  CAS  Google Scholar 

  27. X. Liu, T. Lin, J. Fang, G. Yao, H. Zhao, M. Dodson, and X. Wang: In vivo wound healing and antibacterial performances of electrospun nanofibre membranes. J. Biomed. Mater. Res. A 94, 499 (2010).

    Google Scholar 

  28. J. Lin, C. Li, Y. Zhao, J. Hu, and L.M. Zhang: Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Appl. Mater. Interfaces 4, 1050 (2012).

    Article  CAS  Google Scholar 

  29. M.J. Webber, J.B. Matson, V.K. Tamboli, and S.I. Stupp: Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials 33, 6823 (2012).

    Article  CAS  Google Scholar 

  30. K. Sisson, C. Zhang, M.C. Farach, D.B. Chase, and J-F. Rabolt: Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules 10, 1675 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Consejo Nacional de Ciencia y Tecnología de México (CONACyT), Project Number 242269 and they thank Mónica Arreola Flores for her review of this paper. They also thank Dr. Alan Osiris Sustaita Narváez for the water contact angle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narsimha Mamidi.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.117

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamidi, N., Gutiérrez, H.M.L., Villela-Castrejón, J. et al. Fabrication of gelatin-poly(epichlorohydrin-co-ethylene oxide) fiber scaffolds by Forcespinning® for tissue engineering and drug release. MRS Communications 7, 913–921 (2017). https://doi.org/10.1557/mrc.2017.117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.117

Navigation