Skip to main content
Log in

Modulation of microstructure and interface properties of co-sputter derived Hf1−xTixO2 thin films with various Ti content

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hf1−xTixO2 dielectric thin films were deposited on Si (100) substrates by RF reactive co-sputtering with the variation in RF power of Ti target. The compositional, morphological, structural and optical properties of Hf1−xTixO2 films with various Ti concentration were systematically investigated by X-ray photoelectron spectroscopy (XPS), Field emmission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectroscopy techniques respectively. The electrical properties of the co-sputtered thin films were studied by capacitance–voltage and current density–voltage measurements. The XRD study has shown the enhancement in the the crystalline property of Hf1−xTixO2 film up to 60 W of Ti target power and amorphous like behaviour was observed for higher RF power. The Ti content in Hf1−xTixO2 was calculated from the XPS measurements, where the Ti content was found to be increased with rise in RF power. FESEM micrographs depict the increase in grain size upto the RF power 60 W. The Raman spectrum of the Hf1−xTixO2 film has shown that the major generated phase was titanium-substituted monoclinic phase of HfO2. The flatband voltage (Vfb) and oxide charge density (Qox) were extracted from the high frequency (1 MHz) C–V curve. The Dit has a minimum value for the film deposited at 60 W RF power of Ti target. The leakage current density of the Hf1−xTixO2 films was found to be minimum for the RF power 60 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Kim, K. Lee, Y. Kim, H. Na, D.H. Ko, H. Sohn, S.L. Mater, Chem. Phys. 142, 608–613 (2013)

    Google Scholar 

  2. J.B. Yang, T.C. Chang, J.J. Huang, Y.T. Chen, H.C. Tseng, A.K. Chu, S.M. Sze, M.J. Tsai, Appl. Phys. Lett. 103, 102903 (2013)

    Article  Google Scholar 

  3. L.P. Feng, N. Li, H. Tian, Z.T. Liu, J. Mater. Sci. 49, 1875–1881 (2014)

    Article  Google Scholar 

  4. G. He, Xi. Chen, Z. Sun, Surf. Sci Rep. 68, 68–107 (2013)

    Article  Google Scholar 

  5. C.V. Ramana, M. Vargas, G. Lopez, M. Noor-A-Alam, M. Hernandez, E. Rubio, Ceram. Int. 41, 6187–6193 (2015)

    Article  Google Scholar 

  6. C.V. Ramana, K.K. Bharathi, A. Garcia, A.L. Campbell, J. Phys. Chem. C 116, 9955–9960 (2012)

    Article  Google Scholar 

  7. S.S. Lin, Ceram. Int. 40, 5707–5713 (2014)

    Article  Google Scholar 

  8. T. Tan, Z. Liu, Y. Li, J. Alloys Compd. 510, 78–82 (2012)

    Article  Google Scholar 

  9. G. He, J. Gao, H.S. Chen, J.B. Cui, X.S. Chen, Z.Q. Sun, ACS Appl. Mater. Interfaces 6, 22013–22025 (2014)

    Article  Google Scholar 

  10. Y.W. Yoo, W. Jeon, W. Lee, C.H. An, S.K. Kim, C.S. Hwang, ACS Appl. Mater. Interfaces 6, 22474–22482 (2014)

    Article  Google Scholar 

  11. C.-K. Lee, E. Cho, H.-S. Lee, C.S. Hwang, S. Han, Phys. Rev. B 78, 012102 (2008)

    Article  Google Scholar 

  12. Y.B. Losovyj, I. Ketsman, A. Sokolov, K.D. Belashchnko, P.A. Dowben, J. Tang, Z. Wang, Appl. Phys. Lett. 91, 132908 (2007)

    Article  Google Scholar 

  13. G. He, J.W. Liu, H.S. Chen, Y.M. Liu, Z.Q. Sun, X.S. Chen, M. Liu, L.D. Zhang, J. Mater. Chem. C 2, 5299–5308 (2014)

    Article  Google Scholar 

  14. D.H. Triyoso, R.I. Hegde, S. Zollner, M.E. Ramon, S. Kalpat, R. Gregory, X.D. Wang, J. Jiang, M. Raymond, R. Rai, D. Werho, D. Roan, B.E. White Jr., P.J. Tobin, J. Appl. Phys. 98, 054104 (2005)

    Article  Google Scholar 

  15. F. Chen, X. Bin, C. Hella, X. Shi, W.L. Gladfelter, S.A. Campbell, Microelectron. Eng. 72, 263–266 (2004)

    Article  Google Scholar 

  16. K.C. Das, S.P. Ghosh, N. Tripathy, G. Bose, A. Ashok, P. Pal, J. Mater. Sci. Mater. Electron. 26, 6025–6031 (2015)

    Article  Google Scholar 

  17. C. Ye, H. Wang, J. Zhang, Y. Ye, Y. Wang, B. Wang, Y. Jin, J. Appl. Phys. 107, 04103 (2010)

    Google Scholar 

  18. J.W. Zhang, G. He, L. Zhou, H.S. Chen, X.S. Chen, X.F. Chen, B. Deng, J.G. Lv, Z.Q. Sun, J. Alloys Compd. 611, 253–259 (2014)

    Article  Google Scholar 

  19. E.Z. Smith, S. Wagner, Phys. Rev. Lett. 59, 688–691 (1987)

    Article  Google Scholar 

  20. J.H. Stathi, Phys. Rev. B 40, 1232–1237 (1989)

    Article  Google Scholar 

  21. E. Johlin, L.K. Wagner, T. Buonassisi, J.C. Grossman, Phys. Rev. Lett. 110, 146805 (1989)

    Article  Google Scholar 

  22. F. Jiang, L. Bi, H. Lin, Q. Du, J. Hu, A. Guo, C. Li, J. Xie, L. Deng, Opt. Mater. Express 6, 1872–1880 (2016)

    Google Scholar 

  23. M. Vargas, N.R. Murphy, C.V. Ramana, Appl. Phys. Lett. 104, 101907 (2014)

    Article  Google Scholar 

  24. G. Ayguna, A. Cantasa, Y. Simseka, R. Turan, Thin Solid Films 519, 5820–5825 (2011)

    Article  Google Scholar 

  25. D.M. Hausmann, R.G. Gordon, J. Cryst. Growth 249, 251–261 (2003)

    Article  Google Scholar 

  26. S.N. Tkachev, M.H. Manghnani, A. Niilisk, J. Aarik, H.M. Andar, J. Mater. Sci. 40, 4293-4298 (2005)

    Article  Google Scholar 

  27. M.C. Morales, C.R. Aita, Appl. Phys. Lett. 98, 051909 (2011)

    Article  Google Scholar 

  28. M.A. Krebs, R.A. Condrate, Mater. Sci. Lett. 7, 1327–1330 (1988)

    Article  Google Scholar 

  29. E.H. Nicolian, J.R. Brews, Metal Oxide Semiconductor Physics and Technology (Wiley, New York, 1982), pp. 325–426

    Google Scholar 

  30. C.-T. Tsai, T.-C. Chang, P.-T. Liu, Y.-L. Cheng, F.-S. Huang, Appl. Phys. Lett. 93, 052903 (2008)

    Article  Google Scholar 

  31. C.-L. Lin, M.-Y. Chou, T.-K. Kang, S.-C. Wu, Microelectron. Eng. 88, 950–958 (2011)

    Article  Google Scholar 

  32. H. Kim, S. Yang, K. Park, P. Shanmugam, J.Y. Kwon, 224th ECS Meeting (2013)

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB), DST, Govt. of India sponsored Fast Track research project (SR/FTP/PS-099/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K.C., Ghosh, S.P., Tripathy, N. et al. Modulation of microstructure and interface properties of co-sputter derived Hf1−xTixO2 thin films with various Ti content. J Mater Sci: Mater Electron 28, 12408–12414 (2017). https://doi.org/10.1007/s10854-017-7061-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7061-9

Keywords

Navigation