Skip to main content
Log in

Development of acrylonitrile–butadiene–styrene composites with enhanced UV stability

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aiming to develop acrylonitrile–butadiene–styrene (ABS) composites with enhanced ultraviolet stability, a series of formulations were prepared by melt compounding and evaluated by different characterization techniques. The influence of rutile titanium dioxide (TiO2) and its combination with furnace carbon black (CB) on the viscoelastic properties of neat ABS was studied by dynamic mechanical analysis. An increase in the glass transition (T g) dynamics ascribed to the rubbery phase as a function of exposure time was observed. A greater contribution of CB nanoparticles in combination with TiO2 to minimize the modifications on the T g of the butadienic component was clearly seen. Quasi-static and spectrophotometry results are in good agreement, showing the efficiency of TiO2 submicron particles and CB/TiO2 against photo-oxidative degradation of neat ABS. A different behaviour was observed for modified ABS/TiO2 and ABS/CB/TiO2 composites with light stabilizers, antioxidants and combinations of them. While the TiO2 efficiency was enhanced by the incorporation of combinations of light stabilizers and antioxidants, poor results were observed for modified ABS/CB/TiO2 composites as a consequence of antagonistic interactions. It was concluded that formulations of ABS/CB/TiO2 with light stabilizers and ultraviolet absorbers are unacceptable for common applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adams E, DJBMEA, Colborn RE, Buckley DJ, Colborn RE (1993) Acrylonitrile butadiene styrene polymers. Rapra Technology, Shawbury

    Google Scholar 

  2. Santos RM, Pimenta A, Botelho G, Machado AV (2013) Polym Test 32:78. doi:10.1016/j.polymertesting.2012.08.013

    Article  CAS  Google Scholar 

  3. Santos RM, Botelho GL, Machado AV (2010) J Appl Polym Sci 116:2005. doi:10.1002/app.31663

    CAS  Google Scholar 

  4. Allen NS, Edge M, Corrales T et al (1998) Polym Degrad Stab 61:183. doi:10.1016/S0141-3910(97)00114-6

    Article  CAS  Google Scholar 

  5. Winkler J (2003) Titanium dioxide. Vincentz Network, Hannover

    Google Scholar 

  6. Diebold U (2003) Surf Sci Rep 48:53. doi:10.1016/S0167-5729(02)00100-0

    Article  CAS  ADS  Google Scholar 

  7. Landmann M, Rauls E, Schmidt WG (2012) J Phys 24:195503

    CAS  Google Scholar 

  8. Allen NS, Edge M, Ortega A et al (2004) Polym Degrad Stab 85:927. doi:10.1016/j.polymdegradstab.2003.09.024

    Article  CAS  Google Scholar 

  9. Farrokhpay S (2009) Adv Colloid Interface Sci 151:24. doi:10.1016/j.cis.2009.07.004

    Article  PubMed  CAS  Google Scholar 

  10. Donnet JB, Bansal RC, Wang MJ (1993) Carbon black: science and technology. Taylor & Francis, London

    Google Scholar 

  11. Horrocks AR, Mwila J, Miraftab M, Liu M, Chohan SS (1999) Polym Degrad Stab 65:25. doi:10.1016/S0141-3910(98)00213-4

    Article  CAS  Google Scholar 

  12. Liu M, Horrocks AR (2002) Polym Degrad Stab 75:485. doi:10.1016/S0141-3910(01)00252-X

    Article  CAS  Google Scholar 

  13. Iannuzzi G, Mattsson B, Rigdahl M (2012) Polym Eng Sci. doi:10.1002/pen.23438

  14. Kotsilkova R, Fragiadakis D, Pissis P (2005) J Polym Sci 43:522. doi:10.1002/polb.20352

    Article  CAS  Google Scholar 

  15. Shenavar A, Abbasi F (2007) J Appl Polym Sci 105:2236. doi:10.1002/app.26219

    Article  CAS  Google Scholar 

  16. Hamming LM, Qiao R, Messersmith PB, Catherine Brinson L (2009) Compos Sci Technol 69:1880. doi:10.1016/j.compscitech.2009.04.005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Fragneaud B, Masenelli-Varlot K, Gonzalez-Montiel A, Terrones M, Cavaillé JY (2008) Compos Sci Technol 68:3265. doi:10.1016/j.compscitech.2008.08.013

    Article  CAS  Google Scholar 

  18. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Composites A 41:1345. doi:10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  19. Jouan X, Gardette JL (1992) Polym Degrad Stab 36:91. doi:10.1016/0141-3910(92)90054-9

    Article  CAS  Google Scholar 

  20. Allen NS, Khatami H, Thompson F (1992) Eur Polym J 28:817. doi:10.1016/0014-3057(92)90089-K

    Article  CAS  Google Scholar 

  21. Wu S (1985) Polymer 26:1855. doi:10.1016/0032-3861(85)90015-1

    Article  CAS  Google Scholar 

  22. Wu S (1990) Polym Eng Sci 30:753. doi:10.1002/pen.760301302

    Article  CAS  Google Scholar 

  23. Selvin TP, Kuruvilla J, Sabu T (2004) Mater Lett 58:281. doi:10.1016/S0167-577X(03)00470-1

    Article  CAS  Google Scholar 

  24. Thomas PC, Tomlal Jose E, Selvin Thomas P, Thomas S, Joseph K (2010) Polym Compos 31:1515. doi:10.1002/pc.20938

    Article  CAS  Google Scholar 

  25. Thomas SP, Thomas S, Bandyopadhyay S (2009) Composites A 40:36. doi:10.1016/j.compositesa.2008.10.005

    Article  Google Scholar 

  26. Ghosh P, Chakrabarti A (2000) Eur Polym J 36:1043. doi:10.1016/S0014-3057(99)00157-3

    Article  CAS  Google Scholar 

  27. Duan Y, Liu S, Wang G, Guan H, Wen B (2006) J Appl Polym Sci 102:1839. doi:10.1002/app.24014

    Article  CAS  Google Scholar 

  28. Peña JM, Allen NS, Edge M, Liauw CM, Valange B (2001) Polym Degrad Stab 72:259. doi:10.1016/S0141-3910(01)00033-7

    Article  Google Scholar 

  29. Haacke G, Longordo E, Brinen JS, Andrawes FF, Campbell BH (1999) J Coat Technol 71:87. doi:10.1007/bf02697890

    Article  CAS  Google Scholar 

  30. Peña JM, Allen NS, Edge M et al (2001) J Mater Sci 36:2885. doi:10.1023/a:1017998202931

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Portuguese Foundation for the Science and Technology (FCT) and Poliversal—Plásticos e Tecnologia, S.A. for the PhD grant SFRH/BDE/15657/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, R.M., Botelho, G.L. & Machado, A.V. Development of acrylonitrile–butadiene–styrene composites with enhanced UV stability. J Mater Sci 49, 510–518 (2014). https://doi.org/10.1007/s10853-013-7728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7728-4

Keywords

Navigation