Skip to main content
Log in

Ion sensing film optodes based on chromogenic calix[4]arene: application to the detection of Hg2+, Ni2+ and Eu3+ ions

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The development of sensors for the detection of transition metal ions has attracted a special attention because of the toxic impact of these elements on our environment. Due to their sensitivity, reliable, inexpensive and easy use for on site analysis, optical chemical sensors (optodes) have received an increasing attention for a rapid determination of toxic species in water. A new chromogenic calix[4]arene has been investigated on the basis of the high recognition properties of calixarenes associated to the optical response provided by their functionalization with a phenyl azo group. Thin tetrakis-(phenylazo) calix[4]arene amide derivative layers deposited on a glass suprasil substrate have been characterized by contact angle measurements showing a good surface coverage whereas a uniform morphology of the calixarene membrane in acetonitrile solvent was observed by scanning electron microscopy (SEM). The ability of the tetrakis-(phenylazo) calix[4]arene amide derivative thin film to complex Hg2+, Ni2+ and Eu3+ ions have been demonstrated by the modification of the calixarenes main absorption band at 343 nm and appearance of a new absorption band at 500 nm upon addition of Eu3+. The different sensors could be regenerated with hydrochloric acid. The dynamic concentration range, ion selectivity, response time, repeatability and reproducibility are discussed. These results are suitable to the development of optodes for the detection of metal pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Seitz, W.R.: Chemical sensors based on fiber optics. Anal. Chem. 56, 16A (1984)

    CAS  Google Scholar 

  2. Widmer, H.M.: Ion selective electrode and ion optrodes. Anal. Method Instrum. 1, 60 (1993)

    CAS  Google Scholar 

  3. Oheme, I., Wolfbeis, O.S.: Optical sensors for determination of heavy metal ions. Mikrochim. Acta 126, 177–192 (1997)

    Article  Google Scholar 

  4. Sanchez Pedreno, C., Ortuno, J.A., Albero, M.I., Garcia, M.S., Valero, M.V.: Development of a new bulk optode membrane for the determination of mercury (II). Anal. Chim. Acta 414, 195–203 (2000)

    Article  CAS  Google Scholar 

  5. Sanchez Pedreno, C., Garcia, M.S., Ortuno, J.A., Albero, M.I., Ballester, E.: Development of a new flow-through bulk optrode for the determination of manganese (II). Fresenius. J. Anal. Chem. 369, 680–683 (2001)

    Article  CAS  Google Scholar 

  6. Morf, W.E., Seiler, K., Lehmann, B., Behringer, C., Hartman, K., Simon, W.: Carriers for chemical sensors: design features of optical sensors (optodes) based on selective chromoionophores. Pure Appl. Chem. 61, 1613–1618 (1989)

    Article  CAS  Google Scholar 

  7. Seiler, K., Simon, W.: Theoretical aspects of bulk optode membranes. Anal. Chim. Acta 266, 73–87 (1992)

    Article  CAS  Google Scholar 

  8. Bakker, E., Buhlmann, P., Pretesch, E.: Carrier-based ion-selective electrodes and bulk optode.1. General characteristics. Chem. Rev. 97, 3083–3132 (1997)

    Article  CAS  Google Scholar 

  9. Flora, S.J.S.: Lead exposure: health effects, prevention and treatment. J. Environ. Biol. 23, 25 (2002)

    CAS  Google Scholar 

  10. Nordberg, G.J.: Cadmium and human health: a perspective based on recent studies in China. J. Trace Elemen. Exp. Med. 16, 307–319 (2003)

    Article  CAS  Google Scholar 

  11. Shortreed, M., Bakker, E., Kopelmar, R.: Miniature sodium-selective ion-exchange optode with fluorescent pH chromoionophores and tunable dynamic range. Anal. Chem. 68, 2656–2662 (1996)

    Article  CAS  Google Scholar 

  12. Chan, W.H., Lee, A.W.M., Lee, C.M., Yau, K.W., Wang, K.: Design and characterization of sodium-selective optode membranes based on the lipophilic tetraester of calix[4]arene. Analyst 120, 1963–1967 (1995)

    Article  CAS  Google Scholar 

  13. Wolfbeis, O.S., Schaffar, B.P.H.: Optical sensors: an ion-selective optrode for potassium. Anal. Chim. Acta 198, 1 (1987)

    Article  CAS  Google Scholar 

  14. Toth, K., Nagy, G., Lan, B.T.T., Jeney, J., Choquette, S.J.: Planar waveguide ion-selective sensors. Anal. Chim. Acta 353, 1–10 (1997)

    Article  CAS  Google Scholar 

  15. Zhong, J.R., Liu, M.G., Ao, B.Y., Yang, X.H., Wang, K.M., Xiao, D.: Cham. J. Chin. Univ. 22, 191 (2001)

    Article  CAS  Google Scholar 

  16. Karihara, K., Ohtsu, M., Yoshiba, T., Abe, T., Hisamoto, H., Suzuki, K.: Micrometer-sized lithium ion-selective microoptodes based in a “tailed” neutral ionophore and a fluorescent anionic dye. Anal. Chim. Acta 426, 11 (2001)

    Article  Google Scholar 

  17. Li, H., Wolfbeis, O.S.: Determination of urease activity by flow-injection analysis using an ammonium-selective optrode as the detector. Anal. Chim. Acta 276, 115–119 (1993)

    Article  CAS  Google Scholar 

  18. Kharitonov, A.B., Nad, V.Y., Petrukin, O.M., Talorze, R.V.: Ion-selective field-effect transistors: a sensor for lithium and calcium. J. Anal. Chem. 52, 446 (1997)

    Google Scholar 

  19. Bratov, A., Abramova, N., Dominguez, C., Bald, A.: Ion-selective field effect transistor (ISFET)-based calcium ion sensor with photocured polyurethane membrane suitable for ionised calcium determination in milk. Anal. Chim. Acta 408, 57 (2000)

    Article  CAS  Google Scholar 

  20. Murkovic, I., Wolfbeis, O.S.: Fluorescence based sensors membrane for mercury (II) detection. Sens. Actuators B 39, 246 (1997)

    Article  Google Scholar 

  21. Hassan, S.S.M., Saleh, M.B., Gaber, A.A.A.: Novel mercury (II) ion-selective polymeric membrane sensor based on ethyl-2-benzoyl-2-phenylcarbamoyl acetate. Talanta 53, 285 (2000)

    Article  CAS  Google Scholar 

  22. Lerchi, M., Bakkar, E., Rusterholz, B., Simon, W.: Lead selective bulk optodes based on neutral ionophores with subnanomolar detection limits. Anal. Chem. 64, 1534 (1992)

    Article  CAS  Google Scholar 

  23. Casay, G.A., Narayanan, N., Evans, L., Czuppon, T., Patonay, G.: Near-infrared tetre-substitued aluminum 2, 3-naphthalocyanine dyes for optical fiber applications. Talanta 43, 1997 (1996)

  24. Alder, J.F., Ashworth, D.C., Narayanaswamy, R., Moss, R.E., Sutherland, I.O.: An optical potassium ion sensors. Analyst 112, 1191 (1987)

    Article  CAS  Google Scholar 

  25. Ashworth, D.C., Huang, H.P., Narayanaswamy, R.: An optical calcium ion sensor. Anal. Chim. Acta 213, 251 (1988)

    Article  CAS  Google Scholar 

  26. Kawabata, Y., Tahara, R., Kamichika, T., Imasaka, T., Ishibashi, N.: Fiber optic potassium ion sensor unsing alkyl-acridine orange in plasticized poly(vinyl chloride) membrane. Anal. Chem. 62, 1528 (1990)

    Article  CAS  Google Scholar 

  27. Gutsche, C.D.: Calixarenes: RSC monographs in super-molecular chemistry, no. 1, pp. 149–185. Royal Society of Chemistry, Cambridge (1989)

    Google Scholar 

  28. Bohmer, V.: Calixarenes macrocycles with (almost) unlimited possibilities. Angew. Chem. Int. Ed. Engl. 34, 713 (1995)

    Article  Google Scholar 

  29. Buhlmann, P., Pretsch, E., Bakker, E.: Carrier-based ion selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev. 98, 1593–1687 (1998)

    Article  Google Scholar 

  30. Kürner, J.M., Werner, T.: A calixarene based calcium-selective optode membrane: measuring the absorbance maximum wavelength shift. Fresenius J. Anal. Chem. 368, 759–762 (2000)

    Article  Google Scholar 

  31. Yang, X., Wang, K., Xiao, D., Guo, C., Xu, Y.: Development of a fluorescent optode membrane for sodium ion based on the calix[4]arene and tetraphenylporphine. Talanta. 52, 1033–1039 (2000)

    Google Scholar 

  32. Halouani, H., Dumazet-Bonnamour, I., Duchamp, C., Bavoux, C., Ehlinger, N. Perrin, M., Lamartine, R.: Synthesis, conformations and extraction properties of new chromogenic calix[4]arene amide derivatives, Eur. J. Org. Chem. 2002, 4202–4210 (2002)

  33. Dumazet-Bonnamour, I., Halouani, H., Oueslati, F., Lamartine, R.: Calixarene for metal cations extraction. C. R. Chimie 8, 881–891 (2005)

    Article  CAS  Google Scholar 

  34. Bohmer, V., Vicens, J.: Calixarenes: a verstile class of macrocyclic compounds, pp. 149–171. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  35. Arnaud-Neu, F., Barboso, S., Berny, F., Casnati, A., Muzet, N., Pinalli, A., Ungaro, R., Schwing-Weill, M.J., Wipff, G.: Modulation of cation binding in calix[4]arene amides: complexation and molecular modelling studies. J. Chem. Soc., Perkin Trans. 2, 1727–1738 (1999)

    Google Scholar 

  36. Arduini, A., Ghidini, E., Pochini, A., Ungaro, R., Andreetti, G.D., Ugozzoli, F.: p-t-Butylcalix[4]arene tetra-acetamide: a new strong receptor for alkali cations. J. Incl. Phenom. 6, 119–134 (1988)

    Article  CAS  Google Scholar 

  37. Shimizu, H., Iwamoto, K. Fujimoto, K., Shnikai, S.: Chromogenic calix[4]arene. Chem. Lett. 2147–2150 (1991)

  38. Beer, P.D., Drew, M.G.B., Kan, M., Leeson, P.B., Ogden, M.I., Williams, G.: Lanthanide structure, coordination and extraction investigation of a 1,3-Bis(diethyl amide)-substitued calix[4]arene ligand. Inorg. Chem. 35, 2202–2211 (1996)

    Article  CAS  Google Scholar 

  39. Beer, P.D., Drew, M.G.B., Kan, M., Leeson, P.B., Ogden, M.I.: Versatile cation complexation by a calix[4]arene tetraamide (L). Synthesis and crystal structure of [ML][ClO4]2.nMeCN (M=FeII, NiII, CuII, ZnII or PbII) J. Chem., Soc., Dalton Trans. 24, 1273–1279 (1995)

    Google Scholar 

  40. Van Oss, C.J., Chaudhury, M.K., Good, R.J.: Monopolar surfaces. Adv. Colloid Interface Sci. 28, 35 (1987)

    Article  Google Scholar 

  41. Van Oss, C.J., Chaudhury, M.K., Good, R.J.: Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels. J. Colloid Interface Sci. 128, 313 (1988)

    Google Scholar 

  42. Joseph Goldstein: Scanning electron microscopy and X-ray microanalysis. 3rd edn, pp. 1–11, (2003)

  43. Jones, T.P., Porter, M.D.: Optical pH sensor based on the chemical modification of a porous polymer film. Anal. Chem. 60, 404–406 (1988)

    Article  CAS  Google Scholar 

  44. Safari, A., Bagheri, M.: Design of a copper (II) optode based on immobilization of dithizone on a triacetylcellulose membrane. Sensors and Actuators B 107, 53–58 (2005)

    Article  Google Scholar 

  45. Narita, M., Higuchi, Y., Hamada, F., Kumagai, H.: Metal of water soluble dansly-modified thiacalix[4]arenes. Tetrahedron Lett. 39, 8687–8690 (1998)

    Article  CAS  Google Scholar 

  46. Kim, S.K., Bok, J.H., Bartsch, R.A., Lee, J.Y., Kim, J.S.: A fluoride-selective PCT chemosensor based on formation of a static pyrene excimer. Org. Lett. 7, 4839–4842 (2005)

    Article  CAS  Google Scholar 

  47. Anticó, E., Lerchi, M., Rusterholz, B., Achermann, N., Badertscher, M., Valiente, M., Pretsch, E.: Monitoring Pb2+ with optical sensing films. Anal. Chim. Acta 388, 327–338 (1999)

    Article  Google Scholar 

  48. Kuswandi, B., Narayanaswamy, R.: Characterization of a Hg(II) ion optrode based on Nafion-1-(2-thiazolylazo)-2-naphthol composite thin films. J. Environ. Monit. 1, 109 (1999)

    Article  CAS  Google Scholar 

  49. Absalan, G., Soleimani, M., Asadi, M., Ahmadi, M.B.: Constructing a new optical sensor for monitoring ammonia in waters amples using bis(acetylacetone-ethylenediamnie) tributylphosphine cobalt (III) tetraphenylborate complex-coated triacetylcellulose. Anal. Sci. 20, 1433–1436 (2004)

    Article  CAS  Google Scholar 

  50. Morf, W.E., Seiler, K., Rusterholx, B., Simon, W.: Design of a novel calcium-selective optode membrane based on neutral ionophores. Anal. Chem. 62, 738 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Region Rhône-Alpes (MIRA Doc. Programme) for its financial support of this study. We thank Thierry Tamet (Ingénierie des Matériaux Polymères, UCBL) for the scanning electron miscroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ebdelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebdelli, R., Rouis, A., Mlika, R. et al. Ion sensing film optodes based on chromogenic calix[4]arene: application to the detection of Hg2+, Ni2+ and Eu3+ ions. J Incl Phenom Macrocycl Chem 73, 109–117 (2012). https://doi.org/10.1007/s10847-011-0028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0028-1

Keywords

Navigation