Skip to main content
Log in

A novel nitrite sensor fabricated through anchoring nickel-tetrahydroxy-phthalocyanine and polyethylene oxide film onto glassy carbon electrode by a two-step covalent modification approach

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we present a two-step covalent modification approach to fabricate a novel nitrite sensor through anchoring nickel-tetrahydroxy-phthalocyanine (NiPc(OH)4) and polyethylene oxide (PEO) onto a glassy carbon electrode (GCE). The surface morphology of the prepared NiPc(OH)4/PEO composite films under different dry conditions was characterized by scanning electron microscopy (SEM). The electrochemical behavior of NiPc(OH)4/PEO composite film modified GCE toward the catalytic oxidation of nitrite in pH 7.0 phosphate buffer solution (PBS) was investigated by cyclic voltammetry (CV). After drying under an infrared lamp, the fabricated sensor showed a pronounced electrocatalytic activity improvement toward the oxidation of nitrite and led to a significant decrease in the anodic overpotentials compared with bare GCE, which should be ascribed to the synergistic effect of NiPc(OH)4 and PEO, as well as the enlarged electrochemical effective surface area after drying. Using differential pulse voltammetry (DPV), the sensor gave a linear response to nitrite over the concentration range of 0.1–5,300 μM, with a detection limit of 0.0522 μM. The nitrite sensor exhibits good sensitivity, selectivity, and stability and has been applied for the determination of nitrite in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alonso A, Etxaniz B, Martinez MD (2008) Food Addit Contam 9:111–117

    Article  Google Scholar 

  2. Cammack R, Joannou CL, Cui X, Martinez C, Maraj SR, Hughes MN (1999) Biochim Biophys Acta Bioenerg 1411:475–488

    Article  CAS  Google Scholar 

  3. Chan TYK (2011) Toxicol Lett 200:101–108

    Article  Google Scholar 

  4. Spātaru N, Rao TN, Tryk DA, Fujishima A (2001) J Electrochem Soc 148:E112–E117

    Article  Google Scholar 

  5. Lijinsky W, Epstein SS (1970) Nature 225:21–23

    Article  CAS  Google Scholar 

  6. Wolff IA, Wasserman AE (1972) Science 177:15–19

    Article  CAS  Google Scholar 

  7. Choi KK, Fung KW (1980) Analyst 105:241–245

    Article  CAS  Google Scholar 

  8. Connolly D, Paull B (2001) Ana Chim Acta 441:53–62

    Article  CAS  Google Scholar 

  9. Okemgbo AA, Hill HH, Siems WF, Metcalf SG (1999) Anal Chem 71:2725–2731

    Article  CAS  Google Scholar 

  10. Vishnuvardhan V, Kala R, Prasada RT (2008) Anal Chim Acta 623:53–58

    Article  CAS  Google Scholar 

  11. Liu QH, Yan XL, Guo JC, Wang DH, Li L, Yan FY, Chen LG (2009) Spectrochim Acta A73:789–793

    Article  Google Scholar 

  12. Jiao CX, Niu CG, Huang SY, Shen Q, Yang Y, Shen GL, Yu RQ (2004) Talanta 64:637–643

    Article  CAS  Google Scholar 

  13. Wang LL, Li B, Zhang LM, Zhang LG, Zhao HF (2012) Sens Actuators B 171:946–953

    Article  Google Scholar 

  14. Brandao GC, Lima DC, Ferreira SLC (2012) Talanta 98:231–235

    Article  CAS  Google Scholar 

  15. Strehlitz B, Grundig B, Schumacher W, Kroneck PMH, Vorlop KD, Kotte H (1996) Anal Chem 68:807–816

    Article  CAS  Google Scholar 

  16. Yang CL, Chai YQ, Yuan R, Xua WJ, Chen SH (2013) Anal Methods 5:666–672

    Article  CAS  Google Scholar 

  17. Raoof JB, Ojani R, Ramine M (2009) J Solid State Electrochem 13:1311–1319

    CAS  Google Scholar 

  18. Wang P, Mai ZB, Dai Z, Li YX, Zou XY (2009) Biosens Bioelectron 24:3242–3247

    Article  CAS  Google Scholar 

  19. de EW M, Nunes MR, Arenas LT, Dias SLP, Garcia ITS, Gushikem Y, Costa TMH, Benvenutti EV (2012) J Solid State Electrochem 16:3703–3713

    Google Scholar 

  20. Wang SQ, Yin YM, Lin XQ (2004) Electrochem Commun 6:259–262

    Article  CAS  Google Scholar 

  21. Yang SL, Zeng XD, Liu XY, Wei WZ, Luo SL, Liu Y, Liu YX (2010) J Electroanal Chem 639:181–186

    Article  CAS  Google Scholar 

  22. Huang X, Li YX, Chen YL, Wang L (2008) Sens Actuators B 134:780–786

    Article  CAS  Google Scholar 

  23. Araki K, Angnes L, Azevedo CMN, Toma HE (1995) J Electroanal Chem 397:205–210

    Article  Google Scholar 

  24. Santos WJR, Sousa AL, Luz RCS, Damos FS, Kubota LT, Tanaka AA, Tanaka SMCN (2006) Talanta 70:588–594

    Article  CAS  Google Scholar 

  25. Rocha JRCD, Angnes L, Bertotti M, Araki K, Toma HE (2002) Anal Chim Acta 452:23–28

    Article  Google Scholar 

  26. Mao H, Liu XC, Chao DM, Cui LL, Li YX, Zhang WJ, Wang C (2010) J Mater Chem 20:10277–10284

    Article  CAS  Google Scholar 

  27. Yang CH, Xu JH, Hu SS (2007) J Solid State Electrochem 11:514–520

    CAS  Google Scholar 

  28. Zhang L, Wang LL (2013) J Solid State Electrochem 17:691–700

    CAS  Google Scholar 

  29. Ojani R, Raoof JB, Zamani S (2013) Appl Surf Sci 271:98–104

    CAS  Google Scholar 

  30. Yue R, Lu Q, Zhou YK (2011) Biosens Bioelectron 26:4436–4441

    Article  CAS  Google Scholar 

  31. Zhang Y, Zhao YH, Yuan SS, Wang HG, He CD (2013) Sens Actuators B 185:602–607

    Article  CAS  Google Scholar 

  32. Cui L, Zhu JY, Meng XM, Yin HS, Pan XP, Ai SY (2012) Sens Actuators B161:641–647

    Article  Google Scholar 

  33. Cui LL, Pu T, Liu Y, He XQ (2013) Electrochim Acta 88:59–564

    Article  Google Scholar 

  34. Wang C, Yuan R, Chai YQ, Hua FX (2012) Anal Methods 4:1626–1628

    Article  CAS  Google Scholar 

  35. Chen Q, Ai S, Fan H, Cai J, Ma Q, Zhu X, Yin H (2010) J Solid State Electrochem 14:1681–1688

    CAS  Google Scholar 

  36. Qin C, Wang W, Chen C, Bu LJ, Wang T, Su XL, Xie QJ, Yao SZ (2013) Sens Actuators B 181:375–381

    Article  CAS  Google Scholar 

  37. Braun A (1907) J Tcherniac Ber 40:2709–2714

    CAS  Google Scholar 

  38. Sommerauer M, Rager C, Hanack M (1996) J Am Chem Soc 118:10085–10092

    Article  CAS  Google Scholar 

  39. Kondratenko NV, Nemykin VN, Lukyanets EA, Kostromina NA, Volkov SV, Yagupolskii LM (1997) J Porphyrins Phthalocyanines 1:341–346

    Article  CAS  Google Scholar 

  40. Zuo X, Li N, Zhang H (2012) J Mater Sci 47:2731–2735

    Article  CAS  Google Scholar 

  41. Agboola BO, Ozoemena KI, Nyokong T, Fukuda T, Kobayashi N (2010) Carbon 48:763–773

    Article  CAS  Google Scholar 

  42. Baker R, Wilkinson DP, Zhang JJ (2008) Electrochim Acta 53:6906–6919

    Article  CAS  Google Scholar 

  43. Silva JF, Griveau S, Richard C, Zagal JH, Bedioui F (2007) Electrochem Commun 9:1629–1634

    Article  Google Scholar 

  44. Patrascu D, David I, David V, Mihailciuc C, Stamatin I, Ciurea J, Nagy L, Nagy G, Ciucu AA (2011) Sens Actuators B 156:731–736

    Article  CAS  Google Scholar 

  45. Wang C, Yuan R, Chai YQ, Chen SH, Zhang Y, Hu FX, Zhang MH (2012) Electrochim Acta 62:109–115

    Article  CAS  Google Scholar 

  46. Linders CR, Vincke BJ, Patriarche GJ (1986) Anal Lett 19:1831–1837

    Article  CAS  Google Scholar 

  47. Mashazi P, Togo C, Limson J, Nyokong T (2010) J Porphyrins Phthalocyanines 14:252–263

    Article  CAS  Google Scholar 

  48. Moraes FC, Golinelli DL, Mascaro LH, Machado SA (2010) Sens Actuators B 148:492–497

    Article  CAS  Google Scholar 

  49. Zhu DG, Petty MC (1990) Sens Actuators B 2:265–269

    Article  CAS  Google Scholar 

  50. Bedioui F, Griveau S, Nyokong T, Appleby AJ, Caro CA, Gulppi M, Ochoa G, Zagal JH (2007) Phys Chem Chem Phys 9:3383–3396

    Article  CAS  Google Scholar 

  51. Nyokong T, Bedioui F (2006) J Porphyrins Phthalocyanines 10:1101–1115

    Article  CAS  Google Scholar 

  52. Pillay J, Ozoemena KI (2007) Electrochim Acta 52:3630–3640

    Article  CAS  Google Scholar 

  53. Sousa AL, Santos WJR, Luz RCS, Damos FS, Kubota LT, Tanaka AA, Tanaka SMCN (2008) Talanta 75:333–338

    Article  CAS  Google Scholar 

  54. Wen ZH, Kang TF (2004) Talanta 62:351–355

    Article  CAS  Google Scholar 

  55. Caro CA, Bedioui F, Páez MA, Cárdenas-Jiron GI, Zagal JH (2004) J Electrochem Soc 151:E32–E39

    Article  CAS  Google Scholar 

  56. Li P, Ding Y, Wang A, Zhou L, Wei SH, Zhou YM, Tang YW, Chen Y, Cai CX, Lu TH (2013) ACS Appl Mater Interfaces 5:2255–2260

    Article  CAS  Google Scholar 

  57. Tau P, Nyokong T (2007) Electrochim Acta 52:4455–4553

    Google Scholar 

  58. Pinto NJ, Johnson AT, Macdiarmid AG, Mueller CH, Theofylaktos N, Robinson DC, Miranda FA (2003) Appl Phys Lett 83:4244–4246

    Article  CAS  Google Scholar 

  59. Desai NP, Hubbell JA (1991) Biomaterials 12:144–153

    Article  CAS  Google Scholar 

  60. Lewandowski A, Zajder M, Frąckowiak E, Beguin F (2001) Electrochim Acta 46:2777–2780

    Article  CAS  Google Scholar 

  61. Achar BN, Jayasree PK (1999) Synth Met 104:101–106

    Article  CAS  Google Scholar 

  62. Maeda H, Yamauchi Y, Hosoe M, Li TX, Yamaguchi E, Kasamatsu M, Ohmori H (1997) Chem Pharm Bull 13:721–727

    CAS  Google Scholar 

  63. Gong W, Dou ZY, Liu P, Cai XY, He XQ (2012) J Electroanal Chem 666:62–66

    Article  CAS  Google Scholar 

  64. Ye HC, Crooks RM (2005) J Am Chem Soc 127:4930–4934

    Article  CAS  Google Scholar 

  65. Pauliukaite R, Ghica ME, Fatibello Filho O, Brett CMA (2010) Electrochim Acta 55:6239–6247

    Article  CAS  Google Scholar 

  66. Brylev O, Sarrazin M, Roue L, Belanger D (2007) Electrochim Acta 52:6237–6247

    Article  CAS  Google Scholar 

  67. Sun WL, Zhang S, Liu HZ, Jin LT, Kong JL (1999) Anal Chim Acta 388:103–110

    Article  CAS  Google Scholar 

  68. Guidelli R, Pergola F, Raspi G (1972) Anal Chem 44:745–755

    Article  CAS  Google Scholar 

  69. Mani V, Periasamy AP, Chen SM (2012) Electrochem Commun 17:75–78

    Article  CAS  Google Scholar 

  70. Dreyse P, Isaacs M, Calfumán K, Cáceres C, Aliaga A, Aguirre MJ, Villagra D (2011) Electrochim Acta 56:5230–5237

    Article  CAS  Google Scholar 

  71. Zhang O, Wen YP, Xu JK, Lu LM, Duan XM, Yu HM (2013) Synth Met 164:47–51

    Article  CAS  Google Scholar 

  72. Zhang Y, Luo LQ, Ding YP, Li L (2009) Microchim Acta 167:123–128

    Article  CAS  Google Scholar 

  73. Liu TS, Kang TF, Lu LP, Zhang Y, Cheng SY (2009) J Electroanal Chem 632:197–200

    Article  CAS  Google Scholar 

  74. Kamyabi MA, Aghajanloo F (2008) J Electroanal Chem 614:157–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Science Foundation of China (21273024) and the Natural Science Foundation of Jilin Province, China (201215135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Quan He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.27 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YY., Li, C., Dou, ZY. et al. A novel nitrite sensor fabricated through anchoring nickel-tetrahydroxy-phthalocyanine and polyethylene oxide film onto glassy carbon electrode by a two-step covalent modification approach. J Solid State Electrochem 18, 2625–2635 (2014). https://doi.org/10.1007/s10008-014-2514-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2514-z

Keywords

Navigation