Skip to main content
Log in

Inclusion complexes of cationic xanthene dyes in cucurbit[7]uril

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Improvements in optical properties of organic xanthene fluorophores through molecular encapsulation in cucurbit[7]uril (CB7) should enable better molecular probes and devices to be designed. Although the interactions of several dyes with CB7 have been studied, the data have often been incomplete. Uniformly applied ensemble spectroscopic studies are presented herein, including 1H NMR, UV–Vis, and fluorescence titration experiments of aqueous CB7 complexes with the monocationic xanthene dyes rhodamine 6G (Rh6G, 1), rhodamine B (RhB, 2), rhodamine B benzyl ester (RhBBE, 3), pyronin B (PyB, 4) and pyronin Y (PyY, 5). All of these cationic xanthene dyes formed 1:1 complexes with cucurbit[7]uril as evidenced by NMR data and Job’s plots of fluorescence changes upon addition of CB7. Non-linear regression analysis of the fluorescence titration curves gave precise Ka’s for RhB, RhBBE and PyB between 1.1 × 105 M−1 and 9.1 × 106 M−1. The fluorescence emission intensity of Rh6G was lowered 0.8-fold in the presence of CB7 while the other dyes examined showed an increase between 1.3 and 4.7-fold. NMR titration experiments from 0 to 2.0 equivalents of CB7 per equivalent of xanthene gave in only some cases very clear evidence of inclusion complexation. Non-specific adsorption of these xanthene dyes onto borosilicate glass was very pronounced and could be inhibited by dye inclusion into CB7.

Graphical Abstract

Pyronin B-Cucurbit[7]uril complex

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aslan, K., Gryczynski, I., Malicka, J., Matveeva, E., Lakowicz, J.R., Geddes, C.D.: Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr. Opin. Biotechnol. 16, 55–62 (2005)

    Article  CAS  Google Scholar 

  2. Dooley, C.T., Dore, T.M., Hansom, G.T., Jackson, W.C., Remington, S.J., Tsien, R.Y.: Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 279, 22284–22293 (2004)

    Article  CAS  Google Scholar 

  3. Kettling, U., Koltermann, A., Schwille, P., Eigen, M.: Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc. Natl. Acad. Sci. USA. 95, 1416–1420 (1998)

    Article  CAS  Google Scholar 

  4. Yan, P., Holman, M.W., Robustelli, P., Chowdhury, A., Ishak, F.I., Adams, D.M.: Molecular switch based on a biologically important redox reaction. J. Phys. Chem. B 109, 130–137 (2005)

    Article  CAS  Google Scholar 

  5. Zhang, Y.B., Kanungo, M., Ho, A.J., Freimuth, P., van der Lelie, D., Chen, M., Khamis, S.M., Datta, S.S., Johnson, A.T.C., Misewich, J.A., Wong, S.S.: Functionalized carbon nanotubes for detecting viral proteins. Nano Lett. 7, 3086–3091 (2007)

    Article  CAS  Google Scholar 

  6. Palacios, R.E., Fan, F.-R.F., Bard, A.J., Barbara, P.F.: Single-molecule spectroelectrochemistry (SMS-EC). J. Am. Chem. Soc. 128, 9028–9029 (2006)

    Article  CAS  Google Scholar 

  7. Fabbrizzi, L., Poggi, A.: Sensors and switches from supramolecular chemistry. Chem. Soc. Rev. 25, 197–202 (1995)

    Google Scholar 

  8. Arunkumar, E., Forbes, C.C., Smith, B.D.: Improving the properties of organic dyes by molecular encapsulation. Eur. J. Org. Chem. 2005, 4051–4059 (2005)

    Article  Google Scholar 

  9. Mohanty, J., Bhasikuttan, A.C., Nau, W.M., Pal, H.: Host-guest complexation of neutral red with macrocyclic host molecules: contrasting pK(sub a) shifts and binding affinities for cucurbit[7]uril and b-cyclodextrin. J. Phys. Chem. B 110, 5132–5138 (2006)

    Article  CAS  Google Scholar 

  10. Rohatgi, K.K., Singhal, G.S.: Nature of bonding in dye aggregates. J. Phys. Chem. 70, 1695–1701 (1966)

    Article  CAS  Google Scholar 

  11. Selwyn, J.E., Steinfeld, J.I.: Aggregation equilibria of xanthene dyes. J. Phys. Chem. 76, 762–774 (1972)

    Article  CAS  Google Scholar 

  12. Vosch, T., Hofkens, J., Cotlet, M., Köhn, F., Fujiwara, H., Gronheid, R., van der Biest, K., Weil, T., Herrmann, A., Müllen, K., Mukamel, S., van der Auweraer, M., de Schryver, F.C.: Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules. Angew. Chem. Int. Ed 40, 4643–4648 (2001)

    Article  CAS  Google Scholar 

  13. Tinnefeld, P., Buschmann, V., Weston, K.D., Sauer, M.: Direct observation of collective blinking and energy transfer in a bichromophoric system. J. Phys. Chem. A 107, 323–327 (2003)

    Article  CAS  Google Scholar 

  14. Lee, T.-H., Gonzalez, J.I., Zheng, J., Dickson, R.M.: Single molecule optoelectronics. Acc. Chem. Res. 38, 534–541 (2005)

    Article  CAS  Google Scholar 

  15. Nau, W.M., Mohanty, J.: Taming fluorescent dyes with cucurbit[7]uril. Inter. J. Photoenergy 7, 717–726 (2005)

    Google Scholar 

  16. Mohanty, J., Nau, W.M.: Ultrastable rhodamine with cucurbituril. Angew. Chem. Int. Ed 44, 3750–3754 (2005)

    Article  CAS  Google Scholar 

  17. Buschmann, H.-J., Schollmeyer, E.: Stabilization of dyes against hydrolytic decomposition by the formation of inclusion compounds. J. Incl. Phenom. Macro. Chem. 7, 133–141 (1992)

    Google Scholar 

  18. Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981)

    Article  CAS  Google Scholar 

  19. Day, A., Arnold, A.P., Blanch, R.J., Snushall, B.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001)

    Article  CAS  Google Scholar 

  20. Kim, J., Jung, I., Kim, S., Lee, E., Kang, J., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: synthesis, isolation characterization and X-ray crystal structures of cucurbit[n]uril (n = 5, 7 and 8). J. Am. Chem. Soc. 122, 540–541 (2000)

    Article  CAS  Google Scholar 

  21. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed 44, 4844–4870 (2005)

    Article  CAS  Google Scholar 

  22. Saleh, N., Al-Rawashdeh, N.A.F.: Fluorescence enhancement of cabendazim fungicide in cucurbit[6]uril. J. Fluoresc. 16, 487–493 (2006)

    Article  CAS  Google Scholar 

  23. Maafi, M., Laassis, B., Aaron, J.-J.: Photochemically induced fluorescence investigation of b-cyclodextrin; azure A inclusion complex and determination of analytical parameters. J. Incl. Phenom. Macro. Chem. 22, 235–247 (1995)

    Article  CAS  Google Scholar 

  24. Singh, M.K., Pal, H., Koti, A.S.R., Sapre, A.V.: Photophysical properties and rotational relaxation dynamics of neutral red bound to b-cyclodextrin. J. Phys. Chem. A 108, 1465–1474 (2004)

    Article  CAS  Google Scholar 

  25. Schiller, R.L., Lincoln, S.F., Coates, J.H.: The inclusion of pyronine Y by b- and g-cyclodextrin. J. Chem. Soc. Faraday Trans. 83, 3237–3248 (1987)

    Article  CAS  Google Scholar 

  26. Reija, B., Al-Soufi, W., Novo, M., Tato, J.V.: Specific interactions in the inclusion complexes of pyronines Y and B with b-cyclodextrin. J. Phys. Chem. B 109, 1364–1370 (2005)

    Article  CAS  Google Scholar 

  27. Wang, R., Yuan, L., Macartney, D.H.: A green to blue fluorescence switch of protonated 2-aminoanthracene upon inclusion in cucurbit[7]uril. Chem. Commun. 5867–5869 (2005)

  28. Wagner, B.D., Stojanovic, N., Day, A.I., Blanch, R.J.: Host properties of cucurbit[7]uril: fluorescence enhancement of anilinonaphthalene sulfonates. J. Phys. Chem. B 107, 10741–10746 (2003)

    Article  CAS  Google Scholar 

  29. Mohanty, J., Pal, H., Ray, A.K., Kumar, S., Nau, W.M.: Supramolecular dye laser with cucurbit[7]uril in water. Chem. Phys. Chem. 8, 54–56 (2007)

    CAS  Google Scholar 

  30. Martyn, T.A., Moore, J.L., Halterman, R.L., Yip, W.T.: Cucurbit[7]uril induces superior probe performance for single-molecule detection. J. Am. Chem. Soc. 129, 10338–10339 (2007)

    Article  CAS  Google Scholar 

  31. Halterman, R.L., Moore, J.L., Mannel, L.M.: Disrupting aggregation of tethered rhodamine B dyads through inclusion in cucurbit[7]uril. J. Org. Chem. 73, 3266–3269 (2008)

    Article  CAS  Google Scholar 

  32. Ingham, K.C.: On the application of job’s method of continuous variation to the stoichiometry of protein-ligand complexes. Anal. Biochem. 68, 660–663 (1975)

    Article  CAS  Google Scholar 

  33. Likussar, W., Boltz, D.F.: Theory of continuous variations plots and a new method for spectrophotometric determination of extraction and formation constants. Anal. Chem. 43, 1265–1271 (1971)

    Article  CAS  Google Scholar 

  34. Ong, W., Gomez-Kaifer, M., Kaifer, A.E.: Cucurbit[7]uril: a very effective host for viologens and their cation radicals. Org. Lett. 4, 1791–1794 (2002)

    Article  CAS  Google Scholar 

  35. Gutierrez, M.C., Hortiguela, M.J., Ferrer, M.L., delMonte, F.: Highly fluorescent rhodamine B nanoparticles entrapped in hybrid glasses. Langmuir 23, 2175–2179 (2007)

    Article  CAS  Google Scholar 

  36. Klika, Z., Weissmannova, H., Capkova, P., Pospisil, M.: The rhodamine B intercalation of montmorillonite. J. Coll. Interface Sci. 275, 243–250 (2004)

    Article  CAS  Google Scholar 

  37. Hassner, A., Alexanian, V.: Direct room temperature esterification of carboxylic acids. Tetrahedron Lett. 46, 4475–4478 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

Support through NSF (DMR-0805233) and from the University of Oklahoma and Oklahoma State Regents for Higher Education is appreciated. JLM acknowledges the DOEd for a GAANN Fellowship. KY, JAIH, KAW acknowledge support through the Undergraduate Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Halterman.

Electronic supplementary material

Below is the link to the electronic supplementary material. General experimental procedures and NMR spectral data for RhBBE 3. UV/Vis absorption spectra, fluorescent emission spectra, Job’s plots, titration curves of changes in fluorescence with added CB7 and non-linear regression analysis to give Ka’s, NMR titration spectra of xanthenes 1–5 in presence of varying amounts of CB7. Absorption and emission spectra of PyY (5)–CB7 mixtures after storage in borosilicate, polypropylene or polystyrene containers.

Supplementary material 1 (DOC 8825 kb)

Non-linear regression analysis of Rh6G-CB7 titration curve (JPEG 74 kb)

Non-linear regression analysis of Rh6G benzyl ester-CB7 titration curve (JPEG 115 kb)

Non-linear regression analysis of pyronin B-CB7 titration curve (JPEG 70 kb)

Non-linear regression analysis of initial pyronin Y-CB7 titration curve (JPEG 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halterman, R.L., Moore, J.L., Yakshe, K.A. et al. Inclusion complexes of cationic xanthene dyes in cucurbit[7]uril. J Incl Phenom Macrocycl Chem 66, 231–241 (2010). https://doi.org/10.1007/s10847-009-9615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-009-9615-9

Keywords

Navigation