Skip to main content
Log in

Reversible manipulation of organic dye aggregation through acyclic cucurbit[n]uril-based host-guest complexation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

We use a highly water-soluble acyclic cucurbit[n]uril ACB-01 that bears eight carboxylate groups. ACB-01 has excellent solubility in water and high affinity to the cyanine dyes pseudoisocyanine (PIC) and pinacyanol (PIN) to afford 1:1 complexes. The complexation has been studied by UV–vis absorption, fluorescence and nuclear magnetic resonance (NMR) spectroscopy, and the binding constants (Ka) are determined to be (1.54 ± 0.15) × 106 M−1 and (6.09 ± 0.82) × 105 M−1, respectively. This complexation leads to the inhibition of the J-aggregation of PIC and H-aggregation of PIN. However, competitive guests methyl viologen and 1-adamantanamine hydrochloride can recover their respective J- and H-aggregation due to more stable complexation occurs between them and ACB-01. Thus, we have established a new method of reversibly controlling dye aggregation by regulating the concentration of ACB-01 and competitive guests.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee, J.W., Samal, S., Selvapalam, N., Kim, H.J., Kim, K.: Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry. Acc. Chem. Res. 36(8), 621–630 (2003). https://doi.org/10.1021/ar020254k

    Article  CAS  PubMed  Google Scholar 

  2. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44(31), 4844–4870 (2005). https://doi.org/10.1002/anie.200460675

    Article  CAS  Google Scholar 

  3. Kaifer, A.E.: Toward reversible control of cucurbit[n]uril complexes. Acc. Chem. Res. 47(7), 2160–2167 (2014). https://doi.org/10.1021/ar5001204

    Article  CAS  PubMed  Google Scholar 

  4. Barrow, S.J., Kasera, S., Rowland, M.J., del Barrio, J., Scherman, O.A.: Cucurbituril-based molecular recognition. Chem. Rev. 115(22), 12320–12406 (2015). https://doi.org/10.1021/acs.chemrev.5b00341

    Article  CAS  PubMed  Google Scholar 

  5. Assaf, K.I., Nau, W.M.: Cucurbiturils: From synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44(2), 394–418 (2015). https://doi.org/10.1039/C4CS00273C

    Article  CAS  PubMed  Google Scholar 

  6. Murray, J., Kim, K., Ogoshi, T., Yao, W., Gibb, B.C.: The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46(9), 2479–2496 (2017). https://doi.org/10.1039/C7CS00095B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, Y.H., Zhang, Y.M., Yu, H.J., Liu, Y.: Cucurbituril-based biomacromolecular assemblies. Angew. Chem. Int. Ed. 60(8), 3870–3880 (2021). https://doi.org/10.1002/anie.202009797

    Article  CAS  Google Scholar 

  8. Li, S., Gao, Y., Ding, Y., Xu, A., Yan, H.: Supramolecular nano drug delivery systems mediated via host-guest chemistry of cucurbit[n]uril (n = 6 and 7). Chin. Chem. Lett. 32(1), 313–318 (2021). https://doi.org/10.1016/j.cclet.2020.04.049

    Article  CAS  Google Scholar 

  9. Wang, Z., Sun, C., Yang, K., Chen, X.: Cucurbituril-based supramolecular polymers for biomedical applications. Angew. Chem. 61(38), e202206763 (2022). https://doi.org/10.1002/anie.202206763

    Article  CAS  Google Scholar 

  10. Zhang, P.Q., Li, Q., Wang, Z.K., Tang, Q.X., Liu, P.P., Li, W.H., Yang, G.Y., Yang, B., Ma, D., Li, Z.T.: [5]Rotaxane, linear polymer and supramolecular organic framework constructed by nor-seco-cucurbit[10]uril-based ternary complexation. Chin. Chem. Lett. 34(3), 107632 (2023). https://doi.org/10.1016/j.cclet.2022.06.055

    Article  CAS  Google Scholar 

  11. Jiang, S., Yang, J., Ling, L., Ma, D.: Supramolecular fluorescent probes for the detection of reactive oxygen species discovered via high-throughput screening. Anal. Chem. 94(14), 5634–5641 (2022). https://doi.org/10.1021/acs.analchem.1c05647

    Article  CAS  PubMed  Google Scholar 

  12. Mao, W., Wang, S., Mao, D., Liu, Y., Li, L., Ma, D.: Supramolecular complexation with kinetic stabilization: cucurbit[6]uril encapsulated doxorubicin-based prodrugs for PH-responsive controlled release. New. J. Chem. 46(11), 5355–5360 (2022). https://doi.org/10.1039/d1nj06237a

    Article  CAS  Google Scholar 

  13. Kim, K., Selvapalam, N., Ko, Y.H., Park, K.M., Kim, D., Kim, J.: Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 36(2), 267–279 (2007). https://doi.org/10.1039/B603088M

    Article  CAS  PubMed  Google Scholar 

  14. Cong, H., Ni, X.L., Xiao, X., Huang, Y., Zhu, Q.J., Xue, F.S., Tao, Z., Lindoy, L.F., Wei, G.: Synthesis and separation of cucurbit[n]urils and their derivatives. Org. Biomol. Chem. 14(19), 4335–4364 (2016). https://doi.org/10.1039/C6OB00268D

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh, S.K., Dhamija, A., Ko, Y.H., An, J., Hur, M.Y., Boraste, D.R., Seo, J., Lee, E., Park, K.M., Kim, K.: Superacid-mediated functionalization of hydroxylated cucurbit[n]urils. J. Am. Chem. Soc. 141(44), 17503–17506 (2019). https://doi.org/10.1021/jacs.9b09639

    Article  CAS  PubMed  Google Scholar 

  16. Liu, H.K., Lin, F., Yu, S.B., Wu, Y., Lu, S., Liu, Y.Y., Qi, Q.Y., Cao, J., Zhou, W., Li, X., Wang, H., Zhang, D.W., Li, Z.T., Ma, D.: Highly water-soluble cucurbit[8]uril derivative as a broad-spectrum neuromuscular block reversal agent. J. Med. Chem. 65(24), 16893–16901 (2022). https://doi.org/10.1021/acs.jmedchem.2c01677

    Article  CAS  PubMed  Google Scholar 

  17. Ma, D., Hettiarachchi, G., Nguyen, D., Zhang, B., Wittenberg, J.B., Zavalij, P.Y., Briken, V., Isaacs, L.: Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals. Nat. Chem. 4(6), 503–510 (2012). https://doi.org/10.1038/nchem.1326

    Article  CAS  PubMed  Google Scholar 

  18. Liu, H., Guo, Y.J.L.: Acyclic cucurbiturils and their applications. J. Incl. Phenom. Macrocycl. Chem. 102(9–10), 723–733 (2022). https://doi.org/10.1007/s10847-022-01159-w

    Article  CAS  Google Scholar 

  19. Stancl, M., Hodan, M., Sindelar, V.: Glycoluril trimers: Selective synthesis and supramolecular properties. Org. Lett. 11(18), 4184–4187 (2009). https://doi.org/10.1021/ol9017886

    Article  CAS  PubMed  Google Scholar 

  20. Stancl, M., Gilberg, L., Ustrnul, L., Necas, M., Sindelar, V.: Synthesis and supramolecular properties of glycoluril tetramer. Supramol. Chem. 26(3–4), 168–172 (2013). https://doi.org/10.1080/10610278.2013.842643

    Article  CAS  Google Scholar 

  21. Gilberg, L., Zhang, B., Zavalij, P.Y., Sindelar, V., Isaacs, L.L.: Acyclic cucurbit[n]uril-type molecular containers: Influence of glycoluril oligomer length on their function as solubilizing agents. Org. Biomol. Chem. 13, 4041–4050 (2015). https://doi.org/10.1039/C5OB00184F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brady, K.G., Gilberg, L., Sigwalt, D., Bistany-Riebman, J., Murkli, S., Klemm, J., Kulhanek, P., Sindelar, V., Isaacs, L.: Conformationally mobile acyclic cucurbit[n]uril-type receptors derived from an S-shaped methylene bridged glycoluril pentamer. Supramol. Chem. 32(9), 479–494 (2020). https://doi.org/10.1080/10610278.2013.842643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shcherbakova, E.G., Zhang, B., Gozem, S., Minami, T., Zavalij, P.Y., Isaacs, L., Anzenbacher, P.: Supramolecular sensors for opiates and their metabolites. J. Am. Chem. Soc. 139(42), 14954–14960 (2017). https://doi.org/10.1021/jacs.7b06371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prabodh, A., Bauer, D., Kubik, S., Rebmann, P., Klarner, F.G., Scharder, T., Bizzini, L.D., Mayor, M., Biedermann, F.: Chirality sensing of terpenes, steroids, amino acids, peptides and Drugs with acyclic cucurbit[n]urils and molecular tweezers. Chem. Comm. 56(34), 4652–4655 (2020). https://doi.org/10.1039/D0CC00707B

    Article  CAS  PubMed  Google Scholar 

  25. Hassan, D.S., De los Santos, Z.A., Brady, K.G., Murkli, S., Isaacs, L., Wolf, C.: Chiroptical sensing of amino acids, amines, amino alcohols, alcohols and terpenes with π-extended acyclic cucurbiturils. Org. Biomol. Chem. 19(19), 4248–4253 (2021). https://doi.org/10.1039/D1OB00345C

    Article  CAS  PubMed  Google Scholar 

  26. Chen, J., Liu, Y., Mao, D., Ma, D.: Acyclic cucurbit[n]uril conjugated dextran for drug encapsulation and bioimaging. Chem. Commun. 53(62), 8739–8742 (2017). https://doi.org/10.1039/C7CC04535B

    Article  CAS  Google Scholar 

  27. Mao, D., Liang, Y., Liu, Y., Zhou, X., Ma, J., Jiang, B., Liu, J., Ma, D.: Acid-labile acyclic cucurbit[n]uril molecular containers for controlled release. Angew. Chem. Int. Ed. 56(41), 12614–12618 (2017). https://doi.org/10.1002/anie.201707164

    Article  CAS  Google Scholar 

  28. Liu, J., Chen, L., Dong, G., Yang, J., Zhu, P., Liao, X., Wang, B., Yang, B.: Host-guest inclusion systems of nicotine with acyclic cucurbit[n]urils for controlled heat releases. J. Incl. Phenom. Macrocycl. Chem. 100(3–4), 197–207 (2021). https://doi.org/10.1007/s10847-021-01073-7

    Article  CAS  Google Scholar 

  29. Ma, D., Zhang, B., Hoffmann, U., Sundrup, M.G., Eikermann, M., Isaacs, L.: Acyclic cucurbit[n]uril-type molecular containers bind neuromuscular blocking agents in vitro and reverse neuromuscular block in vivo. Angew. Chem. Int. Ed. 51(45), 11358–11362 (2012). https://doi.org/10.1002/anie.201206031

    Article  CAS  Google Scholar 

  30. Braga, B.C., Gass, P., Hamsch, D.J., Kubik, S.: Characterization of the interaction of nerve agent mimics with selected synthetic receptors. Org. Mater. 4(4), 146–152 (2022). https://doi.org/10.1055/a-1939-6455

    Article  CAS  Google Scholar 

  31. Warmerdam, Z., Kamba, B.E., Le, M.H., Schrader, T., Isaacs, L., Bayer, P., Hof, F.: Binding methylarginines and methyllysines as free amino acids: A comparative study of multiple host classes. ChemBioChem. 23(2), e202100502 (2022). https://doi.org/10.1002/cbic.202100502

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Z.K., Xu, Z.Y., Li, J.J., Yu, S.B., Wang, H., Guo, D.S., Zhang, D.W., Li, Z.T.: Gradient enhancement of supramolecular organic framework for solubilization of hydrophobic molecules by two molecular containers in water. Chin. J. Org. Chem. 42(7), 2236–2242 (2022). https://doi.org/10.6023/cjoc202202038

    Article  CAS  Google Scholar 

  33. Mishra, A., Behera, R.K., Behera, P.K., Mishra, B.K., Behera, G.B.: Cyanines during the 1990s: A review. Chem. Rev. 100(6), 1973–2012 (2000). https://doi.org/10.1021/cr990402t

    Article  CAS  PubMed  Google Scholar 

  34. Jelley, E.E.: Molecular, nematic and crystal states of I: I-diethyl–cyanine chloride. Nature. 139, 631 (1937). https://doi.org/10.1038/139631b0

    Article  CAS  Google Scholar 

  35. Wang, M., Silva, G.L., Armitage, B.A.: DNA-templated formation of a helical cyanine dye J-aggregate. J. Am. Chem. Soc. 122(41), 9977–9986 (2000). https://doi.org/10.1021/ja002184n

    Article  CAS  Google Scholar 

  36. Miyagawa, T., Yamamoto, M., Muraki, R., Onouchi, H., Yashima, E.: Supramolecular helical assembly of an achiral cyanine dye in an induced helical amphiphilic poly(phenylacetylene) interior in water. J. Am. Chem. Soc. 129(12), 3676–3682 (2007). https://doi.org/10.1021/ja068951l

    Article  CAS  PubMed  Google Scholar 

  37. Brooker, L.G., White, F.L., Heseltin, D.W., Keyes, G.H., Dent, S.G., Van Lare, E.J.: Spatial configuration, light absorption, and sensitizing effects of cyanine dyes. J. Photogr. Sci. 1(6), 173–183 (1953). https://doi.org/10.1080/03700240.1953.11736602

    Article  CAS  Google Scholar 

  38. McRae, E.G., Kasha, M.: Enhancement of phosphorescence ability upon aggregation of dye molecules. J. Chem. Phys. 28(4), 721–722 (1958). https://doi.org/10.1063/1.1744225

    Article  CAS  Google Scholar 

  39. Eisfeld, A., Briggs, J.S.: The J- and H-bands of organic dye aggregates. Chem. Phys. 324(2–3), 376–384 (2006). https://doi.org/10.1016/j.chemphys.2005.11.015

    Article  CAS  Google Scholar 

  40. Würthner, F., Kaiser, T.E., Saha-Möller, C.R.: J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. 50(15), 3376–3410 (2011). https://doi.org/10.1002/anie.201002307

    Article  CAS  Google Scholar 

  41. Gadde, S., Batchelor, E.K., Weiss, J.P., Ling, Y., Kaifer, A.E.: Control of H- and J-aggregate formation via host – guest complexation using cucurbituril hosts. J. Am. Chem. Soc. 130(50), 17114–17119 (2008). https://doi.org/10.1021/ja807197c

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, Y.H., Chen, Y.: Supramolecular assembly-enhanced chiroptical properties of pyrene-modified cyclodextrins. Chin. Chem. Lett. 34(3), 107836 (2023). https://doi.org/10.1016/j.cclet.2022.107836

    Article  CAS  Google Scholar 

  43. Wu, G., Bae, Y.J., Olesinsk, M., Antón-García, D., Szabó, I., Rosta, E., Wasielewski, M.R., Scherman, O.A.: Controlling the structure and photophysics of fluorophore dimers using multiple cucurbit[8]uril clampings. Chem. Sci. 11(3), 812–825 (2020). https://doi.org/10.1039/C9SC04587B

    Article  CAS  Google Scholar 

  44. Yang, X., Liu, S.: J-type dimer of auramine O dye upon encapsulation in cucurbit[8]uril host showing intense excimer emission. Dyes Pigm. 159, 331–336 (2018). https://doi.org/10.1016/j.dyepig.2018.06.027

    Article  CAS  Google Scholar 

  45. Nie, H., Wei, Z., Ni, X.L., Liu, Y.: Assembly and applications of macrocyclic-confinement derived supramolecular organic luminescent emissions from cucurbiturils. Chem. Rev. 122(9), 9032–9077 (2022). https://doi.org/10.1021/acs.chemrev.1c01050

    Article  CAS  PubMed  Google Scholar 

  46. Peng, W.C., Lei, Z., Lin, Q.H., Wu, Y., Yang, J.Y., Wang, H., Zhou, W., Zhang, D.W., Li, Z.T., Ma, D.: Acyclic cucurbit[n]urils: effective taste masking nanocontainers for cationic bitter compounds. ChemPlusChem 88, e202300465 (2023). https://doi.org/10.1002/cplu.202300465

    Article  CAS  PubMed  Google Scholar 

  47. Belfield, K.D., Bondar, M.V., Hernandez, F.E., Przhonska, O.V., Yao, S.: Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly. Chem. Phys. 320(2–3), 118–124 (2006). https://doi.org/10.1016/j.chemphys.2005.07.003

    Article  CAS  Google Scholar 

  48. Struganova, I.A., Hazell, M., Gaitor, J., McNally-Carr, D., Zivanovic, S.: Influence of inorganic salts and bases on the J-band in the absorption spectra of water solutions of 1,1‘-diethyl-2,2‘-cyanine iodide. J. Phys. Chem. A. 107(15), 2650–2656 (2003). https://doi.org/10.1021/jp0223004

    Article  CAS  Google Scholar 

  49. Barazzouk, S., Lee, H., Hotchandani, S., Kamat, P.V.: Photosensitization aspects of pinacyanol H-aggregates. Charge injection from singlet and triplet excited states into SnO2 nanocrystallites. J. Phys. Chem. B. 104(15), 3616–3623 (2000). https://doi.org/10.1021/jp994311b

    Article  CAS  Google Scholar 

  50. Merrill, R.C., Spencer, R.W., Getty, R.: The effect of sodium silicates on the absorption spectra of some dyes. J. Am. Chem. Soc. 70(7), 2460–2464 (1948). https://doi.org/10.1021/ja01187a047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (NSFC) for financial support (21921003, 21890730 and 21890732).

Author information

Authors and Affiliations

Authors

Contributions

ZL and DM conceived the project, WP conducted the experiments and analyzed the data, WP, HW, DZ, ZL and DM wrote the paper.

Corresponding authors

Correspondence to Zhan-Ting Li or Da Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 838.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, WC., Wang, H., Zhang, DW. et al. Reversible manipulation of organic dye aggregation through acyclic cucurbit[n]uril-based host-guest complexation. J Incl Phenom Macrocycl Chem 104, 7–13 (2024). https://doi.org/10.1007/s10847-023-01209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01209-x

Keywords

Navigation