Skip to main content
Log in

Application of electrochemical impedance spectroscopy as a technique to characterize phase diagrams of surfactant solutions

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Characterizing the phase behavior of surfactants in solution is essential to their application on different industrial and research fields. Nowadays, the methodology to determine surfactant structural changes in solutions relies on measurements of bulk-solution properties, which frequently fail when working at highly low surfactant solution. Therefore, alternative strategies are required to accomplish such evaluations. Here, we demonstrate that electrochemical impedance spectroscopy (EIS) can be easily applied to characterize surfactant-phase behavior by monitoring structural modifications at the surfactant solution-electrode interface. A graphical analysis of EIS measurements in form of Bode-type diagrams allows obtaining two representative electrochemical parameters: the surfactant solution resistance and the characteristic time constant associated with the electrochemical double-layer formation, as a function of both temperature and surfactant concentration. These parameters are found to be correlated with the change on the surfactant phase and therefore, its detection is accurately performed even at low surfactant concentrations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ohlendorf D, Interthal W, Hoffmann H (1986) Surfactant systems for drag reduction: physico-chemical properties and rheological behaviour. Rheol Acta 25:468–486. doi:10.1007/BF01774397

    Article  CAS  Google Scholar 

  2. Shikata T, Hirata H, Kotaka T (1988) Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4:354–359. doi:10.1021/la00080a019

    Article  CAS  Google Scholar 

  3. Rehage H, Hoffmann H (1988) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92:4712–4719. doi:10.1021/j100327a031

    Article  CAS  Google Scholar 

  4. Wunderlich I, Hoffmann H, Rehage H (1987) Flow birefringence and rheological measurements on shear induced micellar structures. Rheol Acta 26:532–542. doi:10.1007/BF01333737

    Article  CAS  Google Scholar 

  5. Strivens TA (1989) The rheological properties of concentrated cetyltrimethylammonium bromide-salicylic acid solutions in water. Colloid Polym Sci 267:269–280. doi:10.1007/BF01410585

    Article  CAS  Google Scholar 

  6. Göbel S, Hiltrop K (1991) Influence of organic counterions on the structure of lyotropic mesophases. In: Corti M, Mallamace F (eds) Trends colloid interface sci. V. Steinkopff, Darmstadt, pp 241–242

  7. Soltero JFA, Bautista F, Puig JE, Manero O (1999) Rheology of cetyltrimethylammonium p-toluenesulfonate-water system. 3. Nonlinear viscoelasticity. Langmuir 15:1604–1612. doi:10.1021/la971299a

    Article  CAS  Google Scholar 

  8. Ozeki S, Ikeda S (1984) The sphere-rod transition of micelles of dodecyldimethylammonium bromide in aqueous NaBr solutions, and the effects of counterion binding on the micelle size, shape and structure. Colloid Polym Sci 262:409–417. doi:10.1007/BF01410261

    Article  CAS  Google Scholar 

  9. Soltero JFA, Puig JE, Manero O, Schulz PC (1995) Rheology of cetyltrimethylammonium tosylate-water system. 1. Relation to phase-behavior. Langmuir 11:3337–3346. doi:10.1021/la00009a013

    Article  CAS  Google Scholar 

  10. Soltero JFA, Puig JE, Manero O (1996) Rheology of the cetyltrimethylammonium tosilate-water system. 2. Linear viscoelastic regime. Langmuir 7463:2654–2662. doi:10.1021/la950368n

    Article  Google Scholar 

  11. Sepúlveda L, Gamboa C (1987) Effect of temperature on the viscosity of cationic micellar solutions in the presence of added salts. J Colloid Interface Sci 118:87–90. doi:10.1016/0021-9797(87)90437-1

    Article  Google Scholar 

  12. Gamboa C, Rios H, Sepulveda L (1989) Effect of the nature of counterions on the sphere-to-rod transition in cetyltrimethylammonium micelles. J Phys Chem 93:5540–5543. doi:10.1021/j100351a043

    Article  CAS  Google Scholar 

  13. Bravo-Anaya LM, Macias ER, Ramos FC et al (2013) DNA transitions by an adsorption impedance study. J Electrochem Soc 160:G69–G74. doi:10.1149/2.029306jes

    Article  CAS  Google Scholar 

  14. Bravo-Anaya LM, Larios-Durán ER, Casillas N et al (2013) Characterization of DNA/buffer/H2O system through electrochemical impedance spectroscopy (EIS). ECS Trans 47:109–121. doi:10.1149/04701.0109ecst

    Article  Google Scholar 

  15. Pajkossy T, Kolb DM (2007) Double layer capacitance of the platinum group metals in the double layer region. Electrochem Commun 9:1171–1174

    Article  CAS  Google Scholar 

  16. Bard AJ, Faulkner LR (2001) Electrochemical methods : fundamentals and applications. Anti-Corros Methods Mater. doi:10.1016/j.aca.2010.06.020

    Google Scholar 

  17. Kauffman GB (2009) Electrochemical impedance spectroscopy. By Mark E. Orazem and Bernard Tribollet. Angew Chem Int Ed 48:1532–1533. doi:10.1002/anie.200805564

    Article  CAS  Google Scholar 

  18. Scully John R, Silverman David C (1993) Electrochemical impedance: analysis and interpretation. ASTM. doi:10.1520/STP1188-EB

    Google Scholar 

  19. Bockris JO, Reddy AKN (2015) Modern electrochemistry: an introduction to an interdisciplinary area. Statew Agric L Use Baseline. doi:10.1017/CBO9781107415324.004

    Google Scholar 

  20. Alexander CL, Tribollet B, Orazem ME (2016) Contribution of surface distributions to constant-phase-element (CPE) behavior: 2. Capacitance. Electrochim Acta 188:566–573

    Article  CAS  Google Scholar 

  21. Hirschorn B, Orazem ME, Tribollet B et al (2010) Constant-phase-element behavior caused by resistivity distributions in films: I. Theory. J Electrochem Soc 157:C452–C457

    Article  CAS  Google Scholar 

  22. Gravsholt S (1976) Viscoelasticity in highly dilute aqueous solutions of pure cationic detergents. J Colloid Interface Sci 57:575–577. doi:10.1016/0021-9797(76)90236-8

    Article  CAS  Google Scholar 

  23. Nemoto N, Kuwahara M (1994) Self diffusion and viscoelasticity of elongated micelles from cetyltrimethyl-ammonium bromide in aqueous sodium salicylate solution. II. Temperature effect. Colloid Polym Sci 272:846–854. doi:10.1007/BF00652426

    Article  CAS  Google Scholar 

  24. Narayanan J, Manohar C, Langevin D, Urbach W (1997) Growth of cetyltrimethylammonium tosylate micellesA frapp study. Langmuir 13:398–401. doi:10.1021/la9607262

    Article  CAS  Google Scholar 

  25. Macías ER, Bautista F, Soltero JFA et al. (2003) On the shear thickening flow of dilute CTAT worm-like micellar solutions. J Rheol 47:643. doi: 10.1122/1.1562479

  26. Bautista F, Fernández VVA, Macías ER et al (2012) Experimental evidence of the critical phenomenon and shear banding flow in polymer-like micellar solutions. J Nonnewton Fluid Mech 177–178:89–96. doi:10.1016/j.jnnfm.2012.03.006

    Article  Google Scholar 

Download references

Acknowledgements

J. F. A. Soltero and E. R. Larios-Durán acknowledge to CONACYT for financial support through Projects Nos. 223549 and 253873, respectively. J. Jesús Gómez-Guzmán acknowledges the doctoral scholarship granted by CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Larios-Durán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Guzmán, J.J., Macías, E.R., Soltero, J.F.A. et al. Application of electrochemical impedance spectroscopy as a technique to characterize phase diagrams of surfactant solutions. J Appl Electrochem 47, 1273–1282 (2017). https://doi.org/10.1007/s10800-017-1115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1115-9

Keywords

Navigation