Skip to main content
Log in

A novel dendritic crystal Co3O4 as high-performance anode materials for lithium-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The spinel-type Co3O4 with a dendritic nanostructure is prepared via homogeneous co-precipitation method in the presence of oxalic as complex agent. The special structure was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis, which show that the precursor can be transformed into dendritic crystal Co3O4 by calcining at 500 °C for 2 h with a diameter of 20–50 nm. Such a three-dimensional interconnected structure used as an anode material for lithium-ion batteries shows that the discharge specific capacity still remains at 951.7 mA h g−1 after 100 cycles at a current density of 100 mA g−1. Furthermore, this material also presents a good rate performance; when the current density increases to 1,000, 4,000, and 8,000 mA g−1, the reversible capacity can render about 1,126.2, 932.3, and 344.2 mA h g−1, respectively. The excellent electrochemical performance is mainly attributed to the dendritic nanostructure composed of interconnected Co3O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi:10.1038/35104644

    Article  CAS  Google Scholar 

  2. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397. doi:10.1126/science.276.5317

    Article  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603. doi:10.1021/cm901452z

    Article  CAS  Google Scholar 

  4. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. doi:10.1038/451652a

    Article  CAS  Google Scholar 

  5. Jin B, Liu AH, Liu GY, Yang ZZ, Zhong XB, Ma XZ, Yang M, Wang HY (2013) Fe3O4-pyrolytic graphite oxide composite as an anode material for lithium secondary batteries. Electrochim Acta 90:426–432. doi:10.1016/j.electacta.2012.11.114

    Article  CAS  Google Scholar 

  6. Zhang BB, Wang CY, Ru Q, Hu SJ, Sun DW, Song X, Li J (2013) SnO2 nanorods grown on MCMB as the anode material for lithium ion battery. J Alloy Compd 581:1–5. doi:10.1016/j.jallcom.2013.06.158

    Article  CAS  Google Scholar 

  7. Dong XC, Xu H, Wang XW, Huang YX, Chan-Park MB, Zhang H, Wang LH, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213. doi:10.1021/nn300097q

    Article  CAS  Google Scholar 

  8. Lai H, Li JX, Chen ZG, Huang ZG (2012) Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries. ACS Appl Mater Inter 4:2325–2328. doi:10.1021/am300378w

    Article  CAS  Google Scholar 

  9. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499. doi:10.1038/35035045

    Article  CAS  Google Scholar 

  10. Du N, Zhang H, Chen BD, Wu JB, Ma XY, Liu ZH, Zhang YQ, Yang DR, Huang XH, Tu JP (2007) Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: a highly efficient material for Li-battery applications. Adv Mater 19:4505–4509. doi:10.1002/adma.200602513

    Article  CAS  Google Scholar 

  11. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567–573. doi:10.1038/nmat1672

    Article  CAS  Google Scholar 

  12. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Edit 47:2930–2946. doi:10.1002/anie.200702505

    Article  CAS  Google Scholar 

  13. Larcher D, Sudant G, Leriche JB, Chabre Y, Tarascon JM (2002) The electrochemical reduction of Co3O4 in a lithium cell. J Electrochem Soc 149:A234–A241. doi:10.1149/1.1435358

    Article  CAS  Google Scholar 

  14. Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium ion batteries and gas sensors. Adv Funct Mater 15:851–857. doi:10.1149/1.1435358

    Article  CAS  Google Scholar 

  15. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2001) Searching for new anode materials for the Li-ion technology: time to deviate from the usual path. J Power Sources 97–8:235–239. doi:10.1016/S0378-7753(01)00508-0

    Article  Google Scholar 

  16. Pralong V, Leriche JB, Beaudoin B, Naudin E, Morcrette M, Tarascon JM (2004) Electrochemical study of nanometer Co3O4, Co, CoSb3 and Sb thin films toward lithium. Solid State Ionics 166:295–305. doi:10.1016/j.ssi.2003.11.018

    Article  CAS  Google Scholar 

  17. Li Y, Tan B, Wu Y (2007) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265–270. doi:10.1021/nl0725906

    Article  Google Scholar 

  18. Needham SA, Wang GX, Kostantinov K, Tournayre Y, Lao Z, Liu HK (2006) Electrochemical performance of Co3O4-C composite anode materials. Electrochem Solid State Lett 9:A315–A319. doi:10.1149/1.2197108

    Article  CAS  Google Scholar 

  19. Zhang H, Wu JB, Zhai CX, Ma XY, Du N, Tu JP, Yang DR (2007) From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co3O4 nanorods for high performance lithium-ion battery electrodes. Nanotechnology 19:1–5. doi:10.1088/0957-4484/19/03/035711

    Google Scholar 

  20. Laruelle S, Urbina RH, Dupont L, Poizot P, Tarascon JM (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148:A285–A292. doi:10.1149/1.1353566

    Article  Google Scholar 

  21. Liu Y, Mi CH, Su LH, Zhang XG (2008) Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochim Acta 53:2507–2513. doi:10.1016/j.electacta.2007.10.020

    Article  CAS  Google Scholar 

  22. Lou XW, Deng D, Lee JY, Archer LA (2008) Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J Mater Chem 18:4397–4401. doi:10.1039/b810093

    Article  CAS  Google Scholar 

  23. Larcher D, Bonnin D, Cortes R, Rivals I, Personaz L, Tarascon JM (2003) Combined XRD, EXAFS, and Mössbauer studies of the reduction by lithium of α-Fe2O3 with various particle sizes. J Electrochem Soc 150:A1643–A1650. doi:10.1149/1.1622959

    Article  CAS  Google Scholar 

  24. Poizot P, Larunelle S, Grugeon S, Tarascon JM (2002) Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J Electrochem Soc 149:A1212–A1217. doi:10.1149/1.1497981

    Article  CAS  Google Scholar 

  25. Shaju KM, Jiao F, Debart A, Bruce PG (2007) Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys Chem Chem Phys 9:1837–1842. doi:10.1039/b617519h

    Article  CAS  Google Scholar 

  26. Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci 5:895–904. doi:10.1016/S1293-2558(03)00114-6

    Article  CAS  Google Scholar 

  27. Tao LQ, Zai JT, Wang KX, Zhang HJ, Xu M, Shen J, Su YZ, Qian XF (2012) Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J Power Sources 202:230–235. doi:10.1016/j.jpowsour.2011.10.131

    Article  CAS  Google Scholar 

  28. Liu J, Xia H, Lu L, Xue DF (2010) Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. J Mater Chem 20:1506–1510. doi:10.1039/b923834d

    Article  CAS  Google Scholar 

  29. Luo W, Hu XL, Sun YM, Huang YH (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916–8921. doi:10.1039/c2jm00094f

    Article  CAS  Google Scholar 

  30. Du N, Xu YF, Zhang H, Yu JX, Zhai CX, Yang DR (2011) Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. Inorg Chem 50:3320–3324. doi:10.1021/ic102129w

    Article  CAS  Google Scholar 

  31. Liu B, Zhang J, Wang XF, Chen G, Chen D, Zhou CW, Shen GZ (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011. doi:10.1021/n1300794f

    Article  CAS  Google Scholar 

  32. Yang XL, Fan KC, Zhu YH, Shen JH, Jiang X, Zhao P, Li CZ (2012) Tailored grapheme-encapsulated mesoporous Co3O4 composite microspheres for high-performance lithium ion batteries. J Mater Chem 22:17278–17283. doi:10.1039/c2jm32571c

    Article  CAS  Google Scholar 

  33. Tian L, Zou HL, Fu JX, Yang XF, Wang Y, Guo HL, Fu XH, Liang CL, Wu MM, Shen PK, Gao QM (2010) Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv Funct Mater 20:617–623. doi:10.1002/adfm.200901503

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51101062 and 51171065), Science and Technology Project of Guangzhou City, China (Grant No. 2011J4100075), Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Grant No. LYM09052), Extracurricular Science Foundation for Students in South China Normal University of Guangdong, China (Grant No. 13WDGB03), The Scientific Research Foundation of Graduate School of South China Normal University (Grant No. 2013kyjj039), The Natural Science Foundation of Guangdong province (Grant No. S2012020010937, 10351063101000001), and University-Industry Cooperation Projects of Guangdong province, Ministry of Education and Science & Technology (Grant No. 2011A091000014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Y., Ru, Q., Song, X. et al. A novel dendritic crystal Co3O4 as high-performance anode materials for lithium-ion batteries. J Appl Electrochem 44, 781–788 (2014). https://doi.org/10.1007/s10800-014-0690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0690-2

Keywords

Navigation