Skip to main content

Advertisement

Log in

Dendritic micro-nano NiCo2O4 anode material generated from chemical dealloying for high-performance lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

CoNi-contained nanosheets can be prepared by dealloying CoNiAl alloys in aqueous NaOH solution in the presence of H2O2, and upon annealing sample exhibits dendritic NiCo2O4 micro-nanostructure. The effect of H2O2 solution on the structure, morphology, and electrochemical performances of the resulting products is studied systematically. These results indicate that the H2O2 solution mainly influences the morphology of the NiCo2O4. When tested as anode materials for lithium-ion batteries (LIBs), the obtained NiCo2O4 sample shows high specific capacity, excellent rate property, and superb cycling stability. A reversible capacity is still maintained at 1016.9 mAh/g after 100 cycles at a current density of 100 mA/g. Even at a current rate of 1000 mA/g, the capacity can reach to 691.4 mAh/g. The outstanding electrochemical properties of the NiCo2O4 anode make them promising anode materials of LIBs and other energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han X et al (2018) Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opinion Solid State Mater Sci 22(4):109–126

    Article  CAS  Google Scholar 

  2. Fu F et al (2017) Hierarchical NiCo2O4 micro- and nanostructures with tunable morphologies as anode materials for lithium- and sodium-ion batteries. ACS Appl Mater Interfaces 9(19):16194–16201

    Article  CAS  Google Scholar 

  3. Qin B et al (2017) Ultrafast ionic liquid-assisted microwave synthesis of SnO microflowers and their superior sodium-ion storage performance. ACS Appl Mater Interfaces 9(32):26797–26804

    Article  CAS  Google Scholar 

  4. Wang J et al (2014) Structural evolution and pulverization of tin nanoparticles during lithiation-delithiation cycling. J Electrochem Soc 161(11):F3019

    Article  CAS  Google Scholar 

  5. Kamali AR et al (2011) Tin-based materials as advanced anode materials for lithium ion batteries: a review. Rev Adv Mater Sci 27(1):14–24

    CAS  Google Scholar 

  6. Liu Q et al (2019) Double conductivity-improved porous Sn/Sn4P3@ carbon nanocomposite as high-performance anode in lithium-ion batteries. J Colloid Interface Sci 537:588–596

    Article  CAS  Google Scholar 

  7. Wetjen M et al (2018) Morphological changes of silicon nanoparticles and the influence of cutoff potentials in silicon-graphite electrodes. J Electrochem Soc 165(7):A1503

    Article  CAS  Google Scholar 

  8. Zheng M et al (2018) Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci (Weinh) 5(3):1700592

    Article  Google Scholar 

  9. Yuvaraj S et al (2016) An overview of AB2O4-and A2BO4-structured negative electrodes for advanced Li-ion batteries. RSC Adv 6(26):21448–21474

    Article  CAS  Google Scholar 

  10. Zhu Y et al (2015) A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage. Electrochim Acta 176:141–148

    Article  CAS  Google Scholar 

  11. Zhou X et al (2015) One-dimensional NiCo2O4 nanowire arrays grown on nickel foam for high-performance lithium-ion batteries. J Power Sources 299:97–103

    Article  CAS  Google Scholar 

  12. Zhang C et al (2020) NiCo2O4/biomass-derived carbon composites as anode for high-performance lithium ion batteries. J Power Sources 451:227761

    Article  CAS  Google Scholar 

  13. Jain A et al (2019) Two-dimensional porous nanodisks of NiCo2O4 as anode material for high-performance rechargeable lithium-ion battery. J Alloys Compd 772:72–79

    Article  CAS  Google Scholar 

  14. Jin R et al (2016) High electrochemical performances of hierarchical hydrangea macrophylla like NiCo2O4 and NiCo2S4 as anode materials for Li-ion batteries. Mater Res Bull 80:309–315

    Article  CAS  Google Scholar 

  15. McCue I et al (2016) Dealloying and dealloyed materials. Annu Rev Mater Res 46:263–286

    Article  CAS  Google Scholar 

  16. Xu C et al (2010) A general corrosion route to nanostructured metal oxides. Nanoscale 2(6):906–909

    Article  CAS  Google Scholar 

  17. Jiang X et al (2015) Dealloying to porous hybrid manganese oxides microspheres for high performance anodes in lithium ion batteries. J Power Sources 274:862–868

    Article  CAS  Google Scholar 

  18. Wang Z et al (2017) CoFe2O4 nanoplates synthesized by dealloying method as high performance Li-ion battery anodes. Electrochim Acta 252:295–305

    Article  CAS  Google Scholar 

  19. Rong H et al (2018) A novel NiCo2O4@GO hybrid composite with core-shell structure as high-performance anodes for lithium-ion batteries. J Alloys Compd 731:1095–1102

    Article  CAS  Google Scholar 

  20. Marco J et al (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153(1):74–81

    Article  CAS  Google Scholar 

  21. Xiong S et al (2009) Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem Eur J 15(21):5320–5326

    Article  CAS  Google Scholar 

  22. Wang J et al (2017) C@CoFe2O4 fiber-in-tube mesoporous nanostructure: formation mechanism and high electrochemical performance as an anode for lithium-ion batteries. J Alloys Compd 693:110–117

    Article  CAS  Google Scholar 

  23. Chen Z et al (2012) Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure. Chem Rev 112(7):3833–3855

    Article  CAS  Google Scholar 

  24. Lu Q et al (2013) Ordered mesoporous nickel cobaltite spinel with ultra-high supercapacitance. J Mater Chem A 1(6):2331–2336

    Article  CAS  Google Scholar 

  25. Wang Y et al (2010) Excellent performance in lithium-ion battery anodes: rational synthesis of Co (CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 4(3):1425–1432

    Article  CAS  Google Scholar 

  26. Liu Q et al (2019) Hierarchical mulberry-like Fe3S4/Co9S8 nanoparticles as highly reversible anode for lithium-ion batteries. Electrochim Acta 304:405–414

    Article  CAS  Google Scholar 

  27. Chen Z et al (2019) Carbon particles modified macroporous Si/Ni composite as an advanced anode material for lithium ion batteries. Int J Hydrog Energy 44(2):1078–1087

    Article  CAS  Google Scholar 

  28. Liu B et al (2019) A three-dimensional multilevel nanoporous NiCoO2/Ni hybrid for highly reversible electrochemical energy storage. J Mater Chem A 7(27):16222–16230

    Article  CAS  Google Scholar 

  29. Sun X et al (2014) Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 9:168–175

    Article  CAS  Google Scholar 

  30. Sun X et al (2016) High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. J Mater Chem A 4(26):10166–10173

    Article  CAS  Google Scholar 

  31. Wei Y et al (2015) Solvent-controlled synthesis of NiO–CoO/carbon fiber nanobrushes with different densities and their excellent properties for lithium ion storage. ACS Appl Mater Interfaces 7(39):21703–21711

    Article  CAS  Google Scholar 

  32. Sun Y et al (2012) Ultrathin CoO/graphene hybrid nanosheets: a highly stable anode material for lithium-ion batteries. J Phys Chem C 116(39):20794–20799

    Article  CAS  Google Scholar 

  33. Li J et al (2013) High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 5(3):981–988

    Article  CAS  Google Scholar 

  34. Hu L et al (2012) CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci Rep 2:986

    Article  Google Scholar 

  35. Mondal AK et al (2014) Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl Mater Interfaces 6(17):14827–14835

    Article  CAS  Google Scholar 

  36. Yang Y et al (2018) Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery. J Colloid Interface Sci 529:357–365

    Article  CAS  Google Scholar 

  37. Liu Q et al (2020) TiO2 particles wrapped onto macroporous germanium skeleton as high performance anode for lithium-ion batteries. Chem Eng J 381:122649

    Article  CAS  Google Scholar 

  38. Chen Z et al (2019) Graphene quantum dots modified nanoporous SiAl composite as an advanced anode for lithium storage. Electrochim Acta 318:228–235

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2017BEM020 and ZR2019PB019) and Major Science and Technological Innovation Project of Shandong Province (2019JZZY010457).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongwei Li or Yuxia Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1021 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, D., Yang, L. et al. Dendritic micro-nano NiCo2O4 anode material generated from chemical dealloying for high-performance lithium-ion batteries. Ionics 26, 5385–5392 (2020). https://doi.org/10.1007/s11581-020-03726-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03726-y

Keywords

Navigation