Skip to main content

Advertisement

Log in

Role of LPS-elicited signaling in triggering gastric mucosal inflammatory responses to H. pylori: modulatory effect of ghrelin

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Infection with Helicobacter pylori is a primary culprit in the etiology of gastric disease, and its cell-wall lipopolysaccharide (LPS) is recognized as a potent endotoxin responsible for triggering a pattern of the mucosal inflammatory responses. The engagement by the LPS of gastric mucosal Toll-like receptor 4 (TLR4) leads to initiation of signal transduction events characterized by the activation of mitogen-activated protein kinase (MAPK) cascade, induction of phosphoinositide-specific phospholipase C (PLC)/protein kinase C (PKC)/phosphatidylinositol 3-kinase (PI3K) pathway, and up-regulation in Src/Akt. These signaling events in turn exert their influence over H. pylori-elicited excessive generation of NO and PGE2 caused by the disturbances in nitric oxide synthase and cyclooxygenase isozyme systems, increase in epidermal growth factor receptor transactivation, and the induction in matrix metalloproteinase-9 (MMP-9) release. Interestingly, the extent of gastric mucosal inflammatory response to H. pylori is influenced by a peptide hormone, ghrelin, the action of which relays on the growth hormone secretagogue receptor type 1a (GHS-R1a)-mediated mobilization of G-protein dependent transduction pathways. Yet, the signals triggered by TLR-4 activation as well as those arising through GHS-R1a stimulation converge at MAPK and PLC/PKC/PI3K pathways that form a key integration node for proinflammatory signals generated by H. pylori LPS as well as for those involved in modulation of inflammation by ghrelin. Hence, therapeutic targeting these signals’ convergence and integration node could provide a novel and attractive opportunities for developing more effective treatments of H. pylori-related gastric disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499–5011

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  PubMed  Google Scholar 

  • Amith SR, Abdulkhalek S, Szewczuk MR (2016) Role of glycosylation in Toll-like receptor activation and pro-inflammatory responses. In: Weiderschain G (ed) Glycobiology and human diseases. CRC, Boca Raton FL, pp 165–184

    Chapter  Google Scholar 

  • Backert S, Neumann M (2010) What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol 18:479–486

    Article  CAS  PubMed  Google Scholar 

  • Barukcic I (2017) Helicobacter pylori—the cause of human cancer. J Biosci Med 5:1–9

    Google Scholar 

  • Bauer B, Meyer TF (2011) The human gastric pathogen Helicobacter pylori and its association with gastric cancer and ulcer disease. Ulcers 2011(Article ID 340157). doi:10.1155/2011/340157

  • Bergin PJ, Edebo A, Wen S et al (2004) Increased production of matrix metalloproteinases in Helicobacter pylori-associated human gastritis. Helicobacter 9:201–210

    Article  CAS  PubMed  Google Scholar 

  • Bergin DA, Greene CM, Sterchi EE et al (2008) Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway. J Biol Chem 283:31736–31744

    Article  CAS  PubMed  Google Scholar 

  • Beutler B, Jiang Z, Georgel P et al (2006) Gen etic analysis of host resistance: Toll-like receptor signaling and immunity at large. Ann Rev Immunol 24:353–389

    Article  CAS  Google Scholar 

  • Binker MG, Binker-Cosen A, Richards D, Oliver B, Coswn-Binker LI (2009) LPS-stimulated MUC5AC production involves Rac-1-dependent MMP-9 secretion and activation in NCI-H292 cells. Biochem Biophys Res Commun 386:124–129

    Article  CAS  PubMed  Google Scholar 

  • Bonnemaison ML, Eipper BA, Mains RE (2013) Role of adaptor proteins in secretory granule biogenesis and maturation. Front Endocrinol vol 4, Article 101. doi:10.3389/fendo.2013.00101

  • Bourgoin SG, El Azreq MA (2012) Small inhibitors of ADP-ribosylation factor activation and function in mammalian cells. World J Pharmacol 1:55–64

    Article  Google Scholar 

  • Brown WJ, Chambers K, Doody A (2003) Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4:214–221

    Article  CAS  PubMed  Google Scholar 

  • Caivano M, Gorgoni B, Cohen P, Poli V (2001) The induction of cyclooxygenase-2 mRNA in macrophages is biphasic and requires both CCAAT enhancer-binding protein β(C/EBPβ) and C/EBPδ transcription factors. J Biol Chem 276:48693–48701

    Article  CAS  PubMed  Google Scholar 

  • Cario E, Rosenberg IM, Brandwein SL et al (2000) lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164:966–972

    Article  CAS  PubMed  Google Scholar 

  • Carpenter S, O’Neill LAJ (2009) Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signaling proteins. Biochem J 422:1–10

    Article  CAS  PubMed  Google Scholar 

  • Chen CA, Druhan LJ, Varadharaj S et al (2008) Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J Biol Chem 283:27038–27047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YT, Tsai SH, Sheu SY, Tsai LH (2010) Ghrelin improves LPS-induced gastrointestinal motility disturbances: role of NO and prostaglandin E2. Shock 33:205–212

    Article  PubMed  CAS  Google Scholar 

  • Chen XZ, Schottker B, Castro FA (2016) Association of Helicobacter pylori infection and chronic atrophic gastritis with risk of colonic, pancreatic and gastric cancer: a ten-year follow-up of the ESTHER cohort study. Oncotarget 7:17182–17193

    PubMed  PubMed Central  Google Scholar 

  • Cherflis J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

    Article  CAS  Google Scholar 

  • Cho I, Kim SG (2009) A novel mitogen-activated protein kinase phosphatase-1 and glucocorticoid receptor (GR) interacting protein-1-dependnt combinatorial mechanism of gene transrepression by GR. Mol Endocrinol 23:86–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crabtree JE (1996) Immune and inflammatory responses to Helicobacter pylori infection. Scand J Gastroenterol 31(Suppl 215):3–10

    Article  Google Scholar 

  • Cuadrado A, Nebreda AR (2010) Mechanism and Function of p38 MAPK signaling. Biochem J 429:403–417

    Article  CAS  PubMed  Google Scholar 

  • Cuzzocrea S, Salvemini D (2007) Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int 71:290–297

    Article  CAS  PubMed  Google Scholar 

  • Das S, Rafter JD, Kim KP, Gygi SP, Cho W (2003) Mechanism of group IVA cytosolic phospholipase A2 activation by phosphorylation. J Biol Chem 278:41431–41442

    Article  CAS  PubMed  Google Scholar 

  • de Boer WA (2000) Topics in Helicobacer pylori infection: focus on a “search-and-treat” strategy for ulcer disease. Scand J Gastroenterol 35(Suppl 232):4–9

    Google Scholar 

  • De S, Tsimounis A, Chen X, Rotenberg SA (2014) Phosphorylation of α-tubulin by protein kinase C stimulates microtubule dynamics in human breast cells. Cytoskeleton 71:252–272

    Article  CAS  Google Scholar 

  • Delghandi MP, Johannessen M, Moens U (2005) The cAMP signaling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal 17:1343–1351

    Article  CAS  PubMed  Google Scholar 

  • Dhar SK, Soni RK, Das BK, Mukhopadhyay G (2003) Molecular mechanism of action of major Helicobacter pylori virulence factors. Mol Cell Biochem 253:207–215

    Article  CAS  PubMed  Google Scholar 

  • Donaldson JG, Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 12:362–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echizen K, Hirose O, Maeda Y, Ochima M (2016) Inflammation in gastric cancer: interplay of the COX-2/prostaglandin E2 and Toll-like receptor/MyD88 pathways. Cancer Sci 107:391–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiseler T, Wille C, Koehler C, Illing A, Seufferlein T (2016) Protein kinase D2 assembles a multiprotein complex at the trans-Gologi network to regulate matrix metalloproteinase secretion. J Biol Chem 291:462–477

    Article  CAS  PubMed  Google Scholar 

  • Erwin PA, Mitchell DA, Sartoretto J et al (2006) Subcellular targeting and differential S-nitrosylation of endothelial nitric-oxide synthase. J Biol Chem 281:151–157

    Article  CAS  PubMed  Google Scholar 

  • Fallone CA, Chiba N, van Zanten SV et al (2016) The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology 151:51–69

    Article  PubMed  Google Scholar 

  • Finzi L, Shao MXG, Paye F, Housset C, Nadel JA (2009) Lipopolysaccharide initiates a positive feedback of epidermal growth factor receptor signaling by prostaglandin E2 in human biliary carcinoma cells. J Immunol 182:2269–2276

    Article  CAS  PubMed  Google Scholar 

  • Fleming I (2010) Molecular mechanisms underlying activation of eNOS. Pflug Arch Eur J Physiol 459:793–806

    Article  CAS  Google Scholar 

  • Fu SP, Li SN, Wang JF et al (2014) BHBA suppresses LPS-induced inflammation in BV-2 cells by inhibiting NF-κB activation. Med Inflamm 2014, Article ID 983401

  • Fulton D, Gratton JP, Sessa WC (2001) Post-translational control of endothelial NO synthase: why isn’t calcium/calmodulin enough? J Pharm Exp Ther 299:818–824

    CAS  Google Scholar 

  • Goode BL, Durbin DG, Barnes G (2000) Functional cooperation between the microtubule and actin in cytoskeletons. Curr Opin Cell Biol 12:63–71

    Article  CAS  PubMed  Google Scholar 

  • Grishin AV, Wang J, Potoka DA et al (2006) Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. J Immunol 176:580–588

    Article  CAS  PubMed  Google Scholar 

  • Gu S, Liu Y, Zhu B et al (2016) Loss of α-tubulin acetylation is associated with TGF-β-induced epithelial-mesenchymal transition. J Biol Chem 291:5396–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SC, Prasad S, Reuter S et al (2010) Modification of cysteine179 of IκBα kinase by nimbolide leads to down-regulation of NF-κB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. J Biol Chem 285:35406–35417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanania R, Sun HS, Xu K et al (2012) Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion. J Biol Chem 287:8468–8483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris PR, Mobley LT, Perez-Perez GI, Blaser MJ, Smith PD (1996) Helicobacter pylori urease is a potent stimulus of mononuclear phagocyte activation and inflammatory cytokine production. Gastroenterology 111:419–4425

    Article  CAS  PubMed  Google Scholar 

  • Hou DX, Masuzaki S, Hashimoto F et al (2007) Green tea proanthocyanidins inhibit cyclooxygenase-2 expression in LPS-activated mouse macrophages: molecular mechanisms and structure-activity relationship. Arch Biochem Biophys 460:67–74

    Article  CAS  PubMed  Google Scholar 

  • Houghes-Fulford M, Yjandrawinata RR, Li CF, Sayyah S (2005) Arachidonic acid, an omega-6 fatty acid, induces cytoplasmic phospholipase A2 in prostate carcinoma cells. Carcinogenesis 26:1520–1526

    Article  Google Scholar 

  • Howes SC, Alushin GM, Shida T, Nachury MV, Nogales E (2014) Effect of tubulin acetylation and tubulin acetyltransferae binding on microtubule structure. Mol Biol Cell 25:257–266

    Article  CAS  Google Scholar 

  • Hsu D, Fukata M, Hernandez YG et al (2010) Toll-like receptor 4 differentially regulates epidermal growth factor-related growth factors in response to intestinal mucosal injury. Lab Invest 90:1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Inoue I, Mukoubayashi C, Yoshimura N et al (2011) Elevated risk of colorectal adenoma with Helicobacter pylori-related chronic gastritis: a population-based case-control study. Int J Cancer 129:2704–2711

    Article  CAS  PubMed  Google Scholar 

  • Johannessen M, Delghandi MP, Moens U (2004) What turns CREB on? Cell Signal 16:1211–1227

    Article  CAS  PubMed  Google Scholar 

  • Jones KR, Whitmire JM, Merrell S (2010) A tale of two toxins: Helicobacter pylori CagA and VacA modulate host pathways that impact disease. Front Microbiol 1: Article 115, 1–17. doi:10.3389/fmicb.2010.00115

  • Joo M, Wright JG, Hu NN et al (2007) Yin yang 1 enhances cyclooxygenase-2 gene expression in macrophages. Am J Physiol Lung Cell Mol Physiol 292:L1219–L1226

    Article  CAS  PubMed  Google Scholar 

  • Kalebic N, Martinez C, Perlas M et al (2013) Tubulin acetyltransferase aTAT1 destabilizes microtubules independently of its acetylation activity. Mol Cell Biol 33:1114–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang YJ, Wingerd BA, Arakawa T, Smith WL (2006) Cyclooxygense-2 gene transcription in a macrophage model of inflammation. J Immunol 177:8111–8122

    Article  CAS  PubMed  Google Scholar 

  • Kawahara T, Teshima S, Oka A, Sugiyama T, Kishi K, Rokutan K (2001) Type I Helicobacter pylori lipopolysaccharide stimulates Toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells. Infect Immun 69:4382–4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19:24–32

    Article  CAS  PubMed  Google Scholar 

  • Kim SF, Huri DA, Snyder SH (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310:1966–1970

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Ge BX (2008) MyD88-independent activation of a novel actin-Cdc42/Rac pathway is required for Toll-like receptor-stimulated phagocytosis. Cell Res 18:745–755

    Article  CAS  PubMed  Google Scholar 

  • Korhonen R, Lahti A, Kankaanrata H, Moilanen E (2005) Nitric oxide production and signaling in inflammation. Curr Drug Target Inflamm Allergy 4:471–479

    Article  CAS  Google Scholar 

  • Kubben FJGM, Sier CFM, Schram M et al (2007) Eradication of Helicobacter pylori infection favourably affects altered gastric mucosal MMP-9 levels. Helicobacter 12:498–504

    Article  CAS  PubMed  Google Scholar 

  • Kusters JG, van Vliet AHM, Kupiers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liau YH, Lopez RA, Slomiany A, Slomiany BL (1992) Helicobacter pylori lipopolysaccharide effect on the synthesis and secretion of sulfated gastric mucin. Biochem Biophys Res Commun 184:1411–1417

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Lin WN, Wang WJ et al (2009) Functional coupling of COX-2 and cPLA2 induced by ATP in rat vascular smooth muscle cells: role of ERK1/2, p38 MAPK, and NF-κB. Cardiovasc Res 82:522–531

    Article  CAS  PubMed  Google Scholar 

  • Liu AMF, Wong YH (2004) G16-mediated activation of nuclear factor κB by the adenosine A1 receptor involves c-Src, protein kinase C, and ERK signaling. J Biol Chem 279:53196–53204

    Article  CAS  PubMed  Google Scholar 

  • Lodeiro P, Theodoropoulou M, Pardo M, Casanueva FF, Camina JP (2009) c-Src regulates Akt signaling in response to ghrelin via β-arrestin signaling-independent and –dependent mechanism. PLoS One 4(3): e4686. doi:10.1371/journal.pone.0004686

  • Ma X, Sayeski PP (2007) Identification of tubulin as a substrate of Jak2 tyrosine kinase and its role in Jak2-dependent signaling. Biochemistry 46:7153–7162

    Article  CAS  PubMed  Google Scholar 

  • Marshall BJ (1994) Helicobacter pylori. Am J Gastroenterol 89:S116–S128

    CAS  PubMed  Google Scholar 

  • McElroy SJ, Hobbs S, Kallen M et al (2012) Transactivation of EGFR by LPS induces COX-2 expression in enterocytes. PLoS One 7(5):e38373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692–703

    Article  CAS  PubMed  Google Scholar 

  • Miller YI, Choi SH, Weisner P, Bae YS (2012) The SYK side of TLR4: signaling mechanism in response to LPS and minimally oxidized LDL. Br J Pharmacol 167:990–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami M, Kudo I (2002) Phospholipase A2. J Biochem 131:285–292

    Article  CAS  PubMed  Google Scholar 

  • Murthy S, Ryan A, He C, Mallapalli RK, Carter AB (2010) Rac1-mediated mitochondrial H2O2 generation regulates MMP-9 gene expression in macrophages via inhibition of SP-1 and AP-1. J Biol Chem 285:25062–25073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsu H, Dempsey P, Eguchi S (2006) ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am J Cell Physiol 291:C1–C10

    Article  CAS  Google Scholar 

  • Osawa H, Nakazato M, Date Y et al (2005) Impaired production of gastric ghrelin in chronic gastritis associated with Helicobacter pylori. J Clin Endocrinol Metab 90:10–16

    Article  CAS  PubMed  Google Scholar 

  • Oubaha M, Gratton JP (2009) Phosphorylation of endothelial nitric oxide synthase by atypical PKCζ contributes to angiopoietin-1-dependent inhibition of VEGF-induced endothelial permeability. Blood 114:3343–3351

    Article  CAS  PubMed  Google Scholar 

  • Park BS, Lee JO (2013) Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mole Med 45:e66; doi:10.1038/emm.2013.97

  • Peeters TL (2005) Ghrelin: a new player in the control of gastrointestinal functions. Gut 54:1638–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins ND (2007) Integrating cell-signaling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 8:49–62

    Article  CAS  PubMed  Google Scholar 

  • Piotrowski J (1998) Lipopolysaccharide a virulence factor of Helicobacter pylori: effect of antiulcer agents. J Physiol Pharmacol 49:3–24

    CAS  PubMed  Google Scholar 

  • Piotrowski J, Majka J, Slomiany A, Slomiany BL (1995) Helicobacter pylori inhibition of gastric mucosal somatostatin receptor. Biochem Mol Biol Int 36:491–498

    CAS  PubMed  Google Scholar 

  • Piotrowski J, Piotrowski E, Skrodzka D, Slomiany A, Slomiany BL (1997) Induction of acute gastritis and epithelial apoptosis by Helicobacter pylori lipopolysaccharide. Scand J Gastroenterol 32:203–211

    Article  CAS  PubMed  Google Scholar 

  • Poltorak A, Smirnova I, He X et al (1998) genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 24:340–355

    Article  CAS  PubMed  Google Scholar 

  • Quing Y, Wang M, Lin YM et al (2016) Correlation between Helicobacter pylori-associated gastric disease and colorectal neoplasia. World J Gastroenterol 22:4576–4584

    Article  Google Scholar 

  • Radziwon-Balicka A, Santos-Martinez MJ, Corbalan JJ et al (2014) Mechanism of platelet-stimulated colon cancer invasion: role of clusterin and thrombospondin 1 in regulation of p38 MAPK-MMP-9 pathway. Carcinogenesis 35:324–332

    Article  CAS  PubMed  Google Scholar 

  • Rautelin HI, Oksanen AM, Veijola LI et al (2009) Enhanced systemic metalloproteinase response in Helicobacter pylori gastritis. Ann Med 41:208–215

    Article  CAS  PubMed  Google Scholar 

  • Reider G, Hoffman JA, Hatz RA, Stolte M, Enders GA (2003) Up-regulation in inducible nitric oxide synthase in Helicobacter pylori-associated gastritis may represent an increased risk factor to develop gastric carcinoma of the intestinal type. Int J Med Microbiol 293:403–412

    Article  Google Scholar 

  • Reynaert NL, Ckless K, Korn SH et al (2004) Nitirc oxide represses inhibitory κB kinase through S-Nitrosylation. Proc Natl Acad Sci USA 101:8945–8950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieke C, Papendieck A, Sokolova O, Neumann M (2011) Helicobacter pylori-induced tyrosine phosphorylation of IKK-β contributes to NF-κB activation. Biol Chem 392:387–393

    Article  CAS  PubMed  Google Scholar 

  • Rozengurt E (2011) Protein kinase D signaling: multiple biological functions in health and disease. Physiology 26:23–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampieri CL (2013) Helicobacter pylori and gastritis: the role of extracellular matrix metalloproteases, their inhibitors, and the disintegrins and metalloproteases—a systematic literature review. Dig Dis Sci 58:2777–2783

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger J (2004) Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 306:1506–1507

    Article  Google Scholar 

  • Sessa WC (2004) eNOS at a glance. J Cell Sci 117:2427–2429

    Article  CAS  PubMed  Google Scholar 

  • Shishodia S, Koul D, Aggarwal BB (2004) Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-kappa B activation through inhibition of activation of I kappa B alpha kinase and Akt in human non-small cell lung carcinoma: correlation with suppression of COX-2 synthesis. J Immunol 173:2011–2022

    Article  CAS  PubMed  Google Scholar 

  • Sibilia V, Pagani F, Rindi G et al (2008) Central ghrelin gastroprotection involves nitric oxide/prostaglandin cross-talk. Br J Pharmacol 154:688–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slomiany BL, Slomiany A (2000) Blockade of p38 mitogen-activated kinase pathway inhibits inducible nitric oxide synthase and gastric mucosal inflammatory reaction to Helicobacter pylori lipopolysaccharide. Inflammopharmacology 8:371–382

    Article  CAS  Google Scholar 

  • Slomiany BL, Slomiany A (2002) Suppression of gastric mucosal inflammatory responses to Helicobacter pylori lipopolysaccharide by peroxisome proliferator-activated receptor γ activation. IUBMB Life 53:303–308

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2006) Cytosolic phospholipase A2 activation in Helicobacter pylori lipopolysaccharide-induced interference with gastric mucin synthesis. IUBMB Life 58:217–223

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2009) Leptin-induced cytosolic phospholipase A2 activation in gastric mucosal protection against ethanol cytotoxicity involves epidermal growth factor receptor transactivation. Inflammopharmacology 17:6–14

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2010a) Ghrelin protection against lipopolysaccharide-induced gastric mucosal cell apoptosis involves constitutive nitric oxide synthase-mediated caspase-3 S-nitrosylation. Med Inflamm 2010:7. doi:10.1155/2010/280464

    Article  CAS  Google Scholar 

  • Slomiany BL, Slomiany A (2010b) Role of constitutive nitric oxide synthase S-nitrosylation in Helicobacter pylori-induced gastric mucosal cell apoptosis: effect of ghrelin. Inflammopharmacology 18:233–240

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2010c) Helicobacter pylori induces disturbances in gastric mucosal Akt activation through inducible nitric oxide synthase-dependent S-nitrosylation: effect of ghrelin. ISRN Gastroenterology 2011, Article ID: 308727 doi:10.5402/2011/308727

  • Slomiany BL, Slomiany A (2011a) Role of constitutive nitric oxide synthase in regulation of Helicobacter pylori-induced gastric mucosal cyclooxygenase-2 activation through S-nitrosylation: mechanism of ghrelin action. Open J Gastroenterol 1:13–22

    Article  CAS  Google Scholar 

  • Slomiany BL, Slomiany A (2011b) Ghrelin suppression of Helicobacter pylori-induced gastric mucosal iNOS is mediated through the inhibition of IKK-β activation by cNOS-dependent S-nitrosylation. Open J Cell Biol 1:1–10

    Article  Google Scholar 

  • Slomiany BL, Slomiany A (2011c) Role of ghrelin-induced cSrc activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori. Inflammopharmacology 19:197–204

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2012) Modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin: role of cNOS-dependent IKK-β S-nitrosylation in the regulation of COX-2 activation. Am J Mol Biol 2:113–123

    Article  CAS  Google Scholar 

  • Slomiany BL, Slomiany A (2013 a) Role of EGFR transactivation in the amplification of Helicobacter pylori-elicited induction in gastric mucosal expression of COX-2 and iNOS. OA Inflamm 1(1):1

  • Slomiany BL, Slomiany A (2013b) b) Involvement of p38 MAPK-dependent activator protein (AP-1) activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin. Inflammopharmacology 21:67–78

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2013c) Induction in gastric mucosal prostaglandin and nitric oxide by Helicobacter pylori is dependent on MAPK/ERK-mediated activation of IKK-β and cPLA2: modulatory effect of ghrelin. Inflammopharmacology 21:241–251

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2014a) Role of ghrelin-induced phosphatidylinositol 3-kinase activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori. Inflammopharmacology 22:169–177

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2014b) Protein kinase Cδ-mediated posttranslational phosphorylation of constitutive nitric oxide synthase regulates gastric mucosal inflammatory responses to Helicobacter pylori: effect of ghrelin. J Biosci Med 2:20–33

    CAS  Google Scholar 

  • Slomiany BL, Slomiany A (2015a) Role of amplification in phospholipase Cγ2 activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori: effect of ghrelin. Inflammopharmacology 23:37–45

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2015b) Mechanism of Rac1-induced amplification in gastric mucosal phospholipase Cγ2 activation in response to Helicobacter pylori: modulatory effect of ghrelin. Inflammopharmacology 23:101–109

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2015c) Regulatory role of guanine nucleotide exchange factor (GEF) Dock 180 phosphorylation on Tyr/Ser in mediation of gastric mucosal Rac1 activation in response to Helicobacter pylori and ghrelin. Inflammopharmacology 23:111–118

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2016a) a) Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation and its recruitment to the membrane-localized Rac1/p38 complex. Inflammopharmacology 24:87–95

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2016b) Helicobacter pylori-induced gastric mucosal TGF-α ectodomain shedding and EGFR transactivation involves Rac1/p38 MAPK- dependent TACE activation. Inflammopharmacology 24:23–31

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2016c) Role of protein kinase D2 phosphorylation on Tyr in modulation of by ghrelin of Helicobacter pylori-induced up-regulation in gastric mucosal matrix metalloproteinase-9 (MMP-9) secretion. Inflammopharmacology 24:119–126

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Slomiany A (2016d) Role of α-tubulin acetylation and protein kinase D2 Ser/Tyr phosphorylation in modulation by ghrelin of Porphyromonas gingivalis-induced enhancement in MMP-9 secretion by salivary gland cells. J Biosci Med 4:82–94

    Google Scholar 

  • Slomiany BL, Slomiany A (2016e) Helicobacter pylori-induced changes in microtubule dynamics conferred by α-tubulin phosphorylation on Ser/Tyr mediate gastric mucosal secretion of matrix metalloproteinase-9 (MMP-9) and its modulation by ghrelin. Inflammopharmacology 24:197–205

    Article  CAS  PubMed  Google Scholar 

  • Slomiany BL, Piotrowski J, Slomiany A (1997) Anti-Helicobacter pylori activities of ebrotidine. Arzneim Forsch Drug Res 47:475–482

    CAS  Google Scholar 

  • Slomiany BL, Piotrowski J, Slomiany A, Konturek SJ, Domschke WW (1998) Enhancement in the protective qualities of gastric mucus with combination therapy of ebrotidine and amoxicillin for H. pylori eradication. Gen Pharm 31:227–231

    Article  CAS  Google Scholar 

  • Smith SM (2014) Role of Toll-like receptors in Helicobacter pylori infection and immunity. World J Gastrointest Pathophysiol 5:133–146

    PubMed  PubMed Central  Google Scholar 

  • Stolte M, Edit S (1996) Helicobacter pylori and the evolution of gastritis. Scand J Gastroenterol 31(Suppl 214):13–16

    Article  Google Scholar 

  • Tanaka H, Fujita N, Tsuruo T (2005) 3-Phosphoinositide-dependent protein kinase-1-mediated IκB Kinase β (IKKB) phosphorylation activates NF-κB signaling. J Biol Chem 280:40965–40973

    Article  CAS  PubMed  Google Scholar 

  • Trussoni CE, Tabibian JH, Splinter PL, O’Hara SP (2015) Lipopolysaccharide (LPS)-induced biliary epithelial cell NRas activation requires epidermal growth factor receptor (EGFR). PLoS One 10(4):e0125793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandooren J, Van den Steen PE, Opdenakker G (2013) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol 48:222–272

    Article  CAS  PubMed  Google Scholar 

  • Wang JE, Dahle MK, McDonald M, Foster SJ, Aasen AO, Thiemermann C (2003) peptidoglycan and lipoteichoic acid in gram-positive bacterial sepsis: receptors, signal transduction, biological effects, and synergism. Shock 20:402–414

    Article  CAS  PubMed  Google Scholar 

  • Woo CH, Lim JH, Kim JH (2004) Lipopolysaccharide induces matrix metalloproteinase-9 expression via mitochondrial reactive oxygen species-p38 kinase-activator protein-1pathway in Raw 264.7 cells. J Immunol 173:6973–6980

    Article  CAS  PubMed  Google Scholar 

  • Wroblewski LA, Peek RM, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23:713–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Sun Z, Wu J et al (2012) Trihydrophobin 1 phosphorylation by c-Src regulates MAPK/ERK signaling and cell migration. PLoS One 7(1):e29920. doi:10.1371/journal.pone.0029920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Derynck R (2010) Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent Cell proliferation. Mol Cell 37:551–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Jhun BS, Ha CH, Jin ZG (2008a) Molecular mechanism of ghrelin-mediated endothelial nitric-oxide synthase activation. Endocrinology 149:4183–4192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Han C, Wu T (2008b) Activation of cytosolic phospholipase A2 through nitric oxide-induced S-nitrosylation. Involvement of inducible nitric-oxide synthase and cyclooxygenase-2. J Biol Chem 283:3077–3087

    Article  CAS  PubMed  Google Scholar 

  • Yao HY, Chen L, Wang J et al (2011) Inhibition of Rac activity alleviates lipopolysaccharide-induced acute pulmonary injury in mice. Biochim Biophys Acta 1810:666–674

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Martinez JD, Perez-Polo RJ, Lin Y, Uretsky BF, Birnbaum Y (2008) The role of eNOS, iNOS, and NF-κB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastin. Am J Phys Heart Circ Physiol 295:H343–H351

    Article  CAS  Google Scholar 

  • You HJ, Woo CH, Choi EY et al (2005) Roles of Rac and p38 kinase in the activation of cytosolic phospholipase A2 in response to PMA. Biochem J 388:527–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Gaillard S, Phillip JM, Huang TC et al (2015) Inhibition of spleen tyrosine kinase potentiates paclitaxel-induced cytotoxicity in ovarian cancer cells by stabilizing microtubules. Cancer Cell 28:82–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Slomiany.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slomiany, B.L., Slomiany, A. Role of LPS-elicited signaling in triggering gastric mucosal inflammatory responses to H. pylori: modulatory effect of ghrelin. Inflammopharmacol 25, 415–429 (2017). https://doi.org/10.1007/s10787-017-0360-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0360-1

Keywords

Navigation