Skip to main content
Log in

Bloom forming cyanobacterial complexes co-occurring in a subtropical large reservoir: validation of dominant eco-strategies

  • PHYTOPLANKTON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In this study, we analyse the spatial distribution of cyanobacterial summer blooms in a large subtropical reservoir located in the Uruguay River, from 2007 to 2011; these extraordinary algal growth events are mainly represented by scum-forming and nitrogen-fixing eco-strategists of the Dolichospermum and Microcystis genera. The use of the eco-strategists approach, based on ecophysiological work and field observations, allowed us to explain the differences in the distribution pattern and temporal dynamics of both cyanobacterial complexes. Spatial differences were produced due to much higher and fluctuating cyanobacterial abundances at the right margin of the reservoir and at the littoral areas closer to the dam. Satellite imagery (LANDSAT 5 TM) clearly depicted the stronger algal development in the reservoir arms and in the section closer to the dam. The Microcystis spp. complex achieved higher density than the Dolichospermum spp. complex. We hypothesise that the hydrological cycle explains the inter-annual fluctuations of the intensity and frequency of cyanobacterial blooms, and that spatial differences in cyanobacterial presence between the reservoir arms, its margins and the main channel is mainly a response to morphometrical and hydrological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antoniades, D., C. Crawley, M. S. V. Douglas, R. Pienitz, D. Andersen, P. T. Doran, I. Hawes, W. Pollard & W. F. Vincent, 2007. Abrupt environmental change in Canada’s northernmost lake inferred from fossil diatom and pigment stratigraphy. Geophysical Research Letters 34: L18708. doi:10.1029/2007GL030947.

    Article  Google Scholar 

  • APHA (American Public Health Association), 2005. Standard Methods for the Examination of Water and Wastewaters, 21st ed. APHA, Washington.

    Google Scholar 

  • Badger, M. R. & G. D. Price, 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany 54: 609–622.

    Article  PubMed  CAS  Google Scholar 

  • Bartram, J., M. Burch, I. R. Falconer, G. Jones & T. Kuiper-Goodman, 1999. Situation assessment, planning and management. In Chorus, I. & J. Bartram (eds), Toxic Cyanobacteria in Water. A Guide to their Public Health Consequences. Monitoring and Management. E & FN Spon, London: 179–209.

    Google Scholar 

  • Bittencourt-Oliveira, M. C., 2003. Detection of potential microcystin-producing cyanobacteria in Brazilian reservoirs with a mcyB molecular marker. Harmful Algae 2: 51–60.

    Article  Google Scholar 

  • Bormans, M., P. W. Ford & L. Fabbro, 2005. Spatial and temporal variability in cyanobacterial populations controlled by physical processes. Journal of Plankton Research 27: 61–70.

    Article  Google Scholar 

  • Chalar, G., L. De León, E. Brugnoli, J. Clemente & M. Paradiso, 2002. Antecedentes y nuevos aportes al conocimiento de la estructura y dinámica del Embalse Salto Grande. El Agua en Sudamérica: de la Limnología a la Gestión en Sudamérica. In Fernándes Cirelli, A. & G. Chalar (eds), Aprovechamiento y Gestión de los recursos hídricos. CYTED, Buenos Aires: 123–142.

  • Chalar, G. L., 2006. Eutrophication dynamics on different temporal scales: Salto Grande Reservoir (Argentina-Uruguay). In Tundisi, J. G., T. Matsumura-Tundisi & T. Sidagis (eds), Eutrophication in South America: Causes, Consequences and Technologies for Management and Control. International Institute of Ecology Inc., São Carlos: 87–101.

    Google Scholar 

  • Chalar, G., 2009. The use of phytoplankton patterns of diversity for algal bloom management. Limnologica 39: 200–208.

    Article  CAS  Google Scholar 

  • De León, L. & G. Chalar, 2003. Abundancia y diversidad del fitoplancton en el Embalse de Salto Grande (Argentina-Uruguay). Ciclo estacional y distribución espacial. Limnetica 22: 103–113.

    Google Scholar 

  • De Tezanos Pinto, P. & E. Litchman, 2010. The interactive effects of N:P ratios and light on nitrogen-fixer abundance. Oikos 119: 567–575.

    Article  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.

    Article  CAS  Google Scholar 

  • Downing, J. A., S. B. Watson & E. McCauley, 2001. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences 58: 1905–1908.

    Article  Google Scholar 

  • Ferber, L. R., S. N. Levine, A. Lini & G. P. Livingston, 2004. Do Cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshwater Biology 49: 690–708.

    Article  CAS  Google Scholar 

  • Forbes, M. G., R. D. Doyle, J. T. Scott, J. K. Stanely, H. Huang & B. W. Brooks, 2008. Physical factors control phytoplankton production and nitrogen fixation in eight Texas Reservoirs. Ecosystems 11: 1181–1197.

    Article  CAS  Google Scholar 

  • Gemelgo, M. C. P., J. L. N. Mucci & D. Navas-Pereira, 2009. Population dynamics: seasonal variation of phytoplankton functional groups in Brazilian reservoirs (Billings and Guarapiranga, São Paulo). Brazilian Journal of Biology 69: 1001–1013.

    Article  CAS  Google Scholar 

  • Gons, H. J., H. Hakvoort, S. W. M. Peters & S. G. H. Simis, 2005. Optical detection of cyanobacterial blooms. Shipboard observation and remote sensing. In Huisman, J., H. C. P. Matthijs & P. M. Viser (eds), Harmful Cyanobacteria. Springer, Dordrecht: 177–199.

    Chapter  Google Scholar 

  • Huisman, J., J. Sharples, J. Stroom, P. M. Visser, W. E. A. Kardiaa, J. M. H. Verspagen & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.

    Article  Google Scholar 

  • Ibelings, B. W. & K. H. Havens, 2008. Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. In Hudnell, K. H. (ed.), Proceedings of the Interagency, International Symposium on Cyanobacteria Harmful Algal Blooms. Advances in Experimental Medicine and Biology, Springer, New York: 675–732.

  • Jeong, K.-W., D.-K. Kim & G.-J. Joo, 2007. Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the coger Nakdong River (South Korea). Water Research 41: 1269–1279.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y., B. Ji, R. N. S. Wong & M. H. Wong, 2008. Statistical study on the effects of environmental factors on the growth and microcystins production of bloom-forming cyanobacterium—Microcystis aeruginosa. Harmful algae 7: 127–136.

    Article  CAS  Google Scholar 

  • Kosten, S., V. M. L. Huszar, E. Becarés, L. S. Costa, E. van Donk, L.-A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. de Meester, B. Moss, M. Lürling, T. Nõges, S. Romo & M. Scheffer, 2011. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.

    Article  Google Scholar 

  • Kuiper-Goodman, T., I. Falconer & J. Fitzgerald, 1999. Human health aspects. In Chorus, I. & J. Bartram (eds), Toxic Cyanobacteria in Water. A Guide to their Public Health Consequences. Monitoring and Management. E & FN Spon, London: 113–153.

    Google Scholar 

  • Li, Z., J. Yu, M. Yang, J. Zhang, M. D. Burch & W. Han, 2010. Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China. Harmful Algae 9: 481–488.

    Article  CAS  Google Scholar 

  • Litchman, E., P. De Tezanos Pinto, C. A. Klausmeier, M. K. Thomas & K. Yoshiyama, 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653: 15–28.

    Article  CAS  Google Scholar 

  • Liu, X., X. Lu & Y. Chen, 2011. The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: an 11-year investigation. Harmful Algae 10: 337–343.

    Article  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Mitrovic, S. M., L. C. Bowling & R. T. Buckney, 2001. Vertical disentrainment of Anabaena circinalis in the turbid, freshwater Darling River, Australia: quantifying potential benefits from buoyancy. Journal of Plankton Research 23: 47–55.

    Article  Google Scholar 

  • Mitrovic, S. M., L. Hardwick & F. Dorani, 2010. Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia. Journal of Plankton Research 33: 229–241.

    Article  Google Scholar 

  • Moisander, P. H., P. W. Lehman, M. Ochiai & S. Corum, 2009. Diversity of Microcystis aeruginosa in the Klamath River and San Francisco Bay delta, California, USA. Aquatic Microbial Ecology 57: 19–31.

    Article  Google Scholar 

  • Mur, L. R., O. M. Skulberg & H. Utkilen, 1999. Cyanobacteria in the environment. In Chorus, I. & J. Bartram (eds), Toxic Cyanobacteria in Water. A Guide to their Public Health Consequences. Monitoring and Management. E & FN Spon, London: 15–40.

    Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 502: 133–143.

    Article  Google Scholar 

  • Nõges, T., R. Lagauste, P. Nõges & I. Tõnno, 2008. Critical N:P ratio for cyanobacteia and N2-fixing species in the large shallow temperate lakes Peipsi and Võrtsjärv, North-East Europe. Hydrobiologia 599: 77–86.

    Article  Google Scholar 

  • Nusch, E. A., 1980. Comparison of different methods for chlorophyll and phaeopigments determination. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie 14: 14–36.

    CAS  Google Scholar 

  • Oliver, R. & G. Ganf, 2000. Freshwater blooms. In Whitton, B. & M. Potts (eds), The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht: 149–194.

    Google Scholar 

  • Paerl, H. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.

    Article  PubMed  CAS  Google Scholar 

  • Quirós, R. & S. Cuch, 1982. Características Limnológicas del Embalse de Salto Grande II: Distribución y Dinámica de nutrientes. Instituto Nacional de Investigación y Desarrollo Pesquero. Ecología Argentina 8: 111–142.

    Google Scholar 

  • Quirós, R. & L. Luchini, 1982. Características limnológicas del embalse Salto Grande. III. Fitoplancton y su relación con parámetros ambientales. Revista Asociación Ciencias Naturales del Litoral 13: 40–66.

    Google Scholar 

  • Reynolds, C. S., 1999. Non-determinism to probability, or N:P in the community ecology of phytoplankton. Archiv für Hydrobiologie 146: 23–35.

    CAS  Google Scholar 

  • Reynolds, C. S., 2006. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S. & G. H. M. Jaworski, 1978. Enumeration of Natural Microcystis Populations. British Phycology Journal 13: 269–277.

    Article  Google Scholar 

  • Reynolds, C. S. & A. E. Walsby, 1975. Water-blooms. Biological Reviews 50: 437–481.

    Article  CAS  Google Scholar 

  • Rojas, A. & J. H. SALUSO, 1987. Informe Climático de la Provincia de Entre Ríos. INTA EEA Paraná, Publicación Técnica N° 14. Entre Ríos, Argentina.

  • Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasian, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 32: 11254–11258.

    Article  Google Scholar 

  • Scott, J. T., R. D. Doyle, S. Prochnow & J. D. White, 2008. Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured? Ecological Applications 18: 805–819.

    Article  PubMed  Google Scholar 

  • Smith, V. H., 1983. Low nitrogen to phosphorus ratios favor dominante by blue-green algae in lake phytoplankton. Science 221: 669–671.

    Article  PubMed  CAS  Google Scholar 

  • Smith, V. H., V. J. Bierman, B. L. Jones & K. E. Havens, 1995. Historical trends in the Lake Okeechobee ecosystem IV. Nitrogen:phosphorus ratios, cyanobacterial dominance, and nitrogen fixation potential. Archiv für Hydrobiologie, Monographische Beitrage 107: 71–88.

    CAS  Google Scholar 

  • Sotero-Santos, R. B., E. Garcia Carvalho, M. J. Dellamano-Oliveira & O. Rocha, 2008. Occurrence and toxicity of an Anabaena bloom in a tropical reservoir (Southeast Brazil). Harmful Algae 7: 590–598.

    Article  CAS  Google Scholar 

  • Spencer, C. N. & D. L. King, 1989. Role of light, carbon dioxide and nitrogen in regulation of buoyancy, growth and bloom formation of Anabaena flos-aquae. Journal of Plankton Research 11: 283–296.

    Article  Google Scholar 

  • Steel, J. A. & A. Duncan, 1999. Modelling the ecological aspects of bankside reservoirs and implications for management. Hydrobiologia 395–396: 133–147.

    Article  Google Scholar 

  • Stumpf, R. P., 1992. Remote sensing of water clarity and suspended sediments in coastal waters. Proceedings of the First Thematic Conference on Remote Sensing for Marine and coastal Environments, Louisiana, USA.

  • Te, S. H. & K. Y.-H. Gin, 2011. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae 10: 319–329.

    Article  CAS  Google Scholar 

  • Ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.

    Article  Google Scholar 

  • Thompson, P. A., A. M. Waite & K. McMahon, 2003. Dynamics of a cyanobacterial bloom in a hypertrophic stratified weir pool. Marine and Freshwater Research 54: 27–37.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik. Mitteilungen Internationale Vereingung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Venrick, E. L., 1978. How many cells to count? In Sournia, A. (ed.), Phytoplankton Manual. UNESCO Press, Paris: 167–168.

    Google Scholar 

  • Visser, P. M., B. W. Ibelings, L. R. Mur & A. E. Walsby, 2005. The ecophysiology of the harmful cyanobacterium microcystis. In Huisman, J., H. C. P. Matthijs & P. M. Visser (eds), Harmful Cyanobacteria. Springer, Dordrecht: 109–142.

    Chapter  Google Scholar 

  • Wacklin, P., L. Hoffmann & J. Kimárek, 2009. Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (Rlfs ex Bornet et Flahault) comb. Nova. Fottea 9: 59–64.

    Google Scholar 

  • Wheeler, S. M., L. A. Morrissey, S. N. Levine, G. P. Livingstone & W. P. Vincent, 2011. Mapping cyanobacterial blooms in Lake Champlain′s Missisquoi Bay using Quickbird and MERIS satellite. Journal of Great Lakes Research 38. http://dx.doi.org/10.1016/j.jglr.2011.06.009.

  • Wiedner, C., J. Rücker, R. Brüggeman & B. Nixdorf, 2007. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152: 473–484.

    Article  PubMed  Google Scholar 

  • Znachor, P., T. Jurczak, J. Komárková, J. Jezberová, J. Mankiewicz, K. Kaštovska & E. Zapomĕlová, 2006. Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs. Environmental Toxicology 21: 236–243.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Joint Technical Commission of Salto Grande (CTM) and the Uruguay River Management Commission (CARU) for field assistance and making available the data here presented and Ruben Lombardo for his assistance with multivariate analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inés O’Farrell.

Additional information

Guest editors: N. Salmaso, L. Naselli-Flores, L. Cerasino, G. Flaim, M. Tolotti & J. Padisák / Phytoplankton responses to human impacts at different scales: 16th workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Farrell, I., Bordet, F. & Chaparro, G. Bloom forming cyanobacterial complexes co-occurring in a subtropical large reservoir: validation of dominant eco-strategies. Hydrobiologia 698, 175–190 (2012). https://doi.org/10.1007/s10750-012-1102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1102-4

Keywords

Navigation