Skip to main content

Advertisement

Log in

Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Iron overload cardiomyopathy (IOC) is a major cause of death in patients with diseases associated with chronic anemia such as thalassemia or sickle cell disease after chronic blood transfusions. Associated with iron overload conditions, there is excess free iron that enters cardiomyocytes through both L- and T-type calcium channels thereby resulting in increased reactive oxygen species being generated via Haber-Weiss and Fenton reactions. It is thought that an increase in reactive oxygen species contributes to high morbidity and mortality rates. Recent studies have, however, suggested that it is iron overload in mitochondria that contributes to cellular oxidative stress, mitochondrial damage, cardiac arrhythmias, as well as the development of cardiomyopathy. Iron chelators, antioxidants, and/or calcium channel blockers have been demonstrated to prevent and ameliorate cardiac dysfunction in animal models as well as in patients suffering from cardiac iron overload. Hence, either a mono-therapy or combination therapies with any of the aforementioned agents may serve as a novel treatment in iron-overload patients in the near future. In the present article, we review the mechanisms of cytosolic and/or mitochondrial iron load in the heart which may contribute synergistically or independently to the development of iron-associated cardiomyopathy. We also review available as well as potential future novel treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aguilar-Martinez P, Lok CY, Cunat S, Cadet E, Robson K, Rochette J (2007) Juvenile hemochromatosis caused by a novel combination of hemojuvelin G320V/R176C mutations in a 5-year old girl. Haematologica 92:421–422

    Article  PubMed  CAS  Google Scholar 

  2. Allen KJ, Gurrin LC, Constantine CC, Osborne NJ, Delatycki MB, Nicoll AJ, McLaren CE, Bahlo M, Nisselle AE, Vulpe CD, Anderson GJ, Southey MC, Giles GG, English DR, Hopper JL, Olynyk JK, Powell LW, Gertig DM (2008) Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med 358:221–230. https://doi.org/10.1056/NEJMoa073286

    Article  PubMed  CAS  Google Scholar 

  3. Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, Firmin DN, Wonke B, Porter J, Walker JM, Pennell DJ (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:2171–2179

    Article  PubMed  CAS  Google Scholar 

  4. Bartfay WJ, Bartfay E (2000) Iron-overload cardiomyopathy: evidence for a free radical—mediated mechanism of injury and dysfunction in a murine model. Biol Res Nurs 2:49–59. https://doi.org/10.1177/109980040000200106

    Article  PubMed  CAS  Google Scholar 

  5. Bartfay WJ, Butany J, Lehotay DC, Sole MJ, Hou D, Bartfay E, Liu PP (1999) A biochemical, histochemical, and electron microscopic study on the effects of iron-loading on the hearts of mice. Cardiovasc Pathol 8:305–314

    Article  PubMed  CAS  Google Scholar 

  6. Bayar N, Arslan S, Erkal Z, Kucukseymen S (2014) Sustained ventricular tachycardia in a patient with thalassemia major. Ann Noninvasive Electrocardiol 19:193–197. https://doi.org/10.1111/anec.12085

    Article  PubMed  Google Scholar 

  7. Bekri S, Kispal G, Lange H, Fitzsimons E, Tolmie J, Lill R, Bishop DF (2000) Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 96:3256–3264

    PubMed  CAS  Google Scholar 

  8. Berdoukas V, Chouliaras G, Moraitis P, Zannikos K, Berdoussi E, Ladis V (2009) The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study. J Cardiovasc Magn Reson 11:20. https://doi.org/10.1186/1532-429x-11-20

    Article  PubMed  PubMed Central  Google Scholar 

  9. Berdoukas V, Coates TD, Cabantchik ZI (2015) Iron and oxidative stress in cardiomyopathy in thalassemia. Free Radic Biol Med 88:3–9. https://doi.org/10.1016/j.freeradbiomed.2015.07.019

    Article  PubMed  CAS  Google Scholar 

  10. Brewer C, Otto-Duessel M, Wood RI, Wood JC (2014a) Sex differences and steroid modulation of cardiac iron in a mouse model of iron overload. Translational Research: the journal of laboratory and clinical medicine 163:151–159. https://doi.org/10.1016/j.trsl.2013.08.004

  11. Brewer CJ, Wood RI, Wood JC (2014b) mRNA regulation of cardiac iron transporters and ferritin subunits in a mouse model of iron overload. Exp Hematol 42:1059–1067. https://doi.org/10.1016/j.exphem.2014.09.002

  12. Cassinerio E, Roghi A, Orofino N, Pedrotti P, Zanaboni L, Poggiali E, Giuditta M, Consonni D, Cappellini MD (2015) A 5-year follow-up in deferasirox treatment: improvement of cardiac and hepatic iron overload and amelioration in cardiac function in thalassemia major patients. Ann Hematol 94:939–945. https://doi.org/10.1007/s00277-014-2291-x

    Article  PubMed  CAS  Google Scholar 

  13. Cavadini P, Biasiotto G, Poli M, Levi S, Verardi R, Zanella I, Derosas M, Ingrassia R, Corrado M, Arosio P (2007) RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload. Blood 109:3552–3559. https://doi.org/10.1182/blood-2006-08-041632

    Article  PubMed  CAS  Google Scholar 

  14. Cavallaro L, Meo A, Busa G, Coglitore A, Sergi G, Satullo G, Donato A, Calabro MP, Miceli M (1993) Arrhythmia in thalassemia major: evaluation of iron chelating therapy by dynamic ECG. Minerva Cardioangiol 41:297–301

    PubMed  CAS  Google Scholar 

  15. Chang HC, Shapiro JS, Ardehali H (2016) Getting to the "heart" of cardiac disease by decreasing mitochondrial Iron. Circ Res 119:1164–1166. https://doi.org/10.1161/CIRCRESAHA.116.309746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chang HC, Wu R, Shang M, Sato T, Chen C, Shapiro JS, Liu T, Thakur A, Sawicki KT, Prasad SV, Ardehali H (2016) Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med 8:247–267. https://doi.org/10.15252/emmm.201505748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E, Choyke PL, Pooput C, Kirk KL, Buettner GR, Levine M (2007) Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci U S A 104:8749–8754. https://doi.org/10.1073/pnas.0702854104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chiamvimonvat N, O'Rourke B, Kamp TJ, Kallen RG, Hofmann F, Flockerzi V, Marban E (1995) Functional consequences of sulfhydryl modification in the pore-forming subunits of cardiovascular Ca2+ and Na+ channels. Circ Res 76:325–334

    Article  PubMed  CAS  Google Scholar 

  19. Chiang S, Kovacevic Z, Sahni S, Lane DJ, Merlot AM, Kalinowski DS, Huang ML, Richardson DR (2016) Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clin Sci 130:853–870. https://doi.org/10.1042/CS20160072

    Article  PubMed  CAS  Google Scholar 

  20. Crowe S, Bartfay WJ (2002) Amlodipine decreases iron uptake and oxygen free radical production in the heart of chronically iron overloaded mice. Biol Res Nurs 3:189–197. https://doi.org/10.1177/109980040200300404

    Article  PubMed  Google Scholar 

  21. Das SK, Wang W, Zhabyeyev P, Basu R, McLean B, Fan D, Parajuli N, DesAulniers J, Patel VB, Hajjar RJ, Dyck JR, Kassiri Z, Oudit GY (2015) Iron-overload injury and cardiomyopathy in acquired and genetic models is attenuated by resveratrol therapy. Sci Rep 5:18132. https://doi.org/10.1038/srep18132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Das SK, Patel VB, Basu R, Wang W, DesAulniers J, Kassiri Z, Oudit GY (2017) Females are protected from Iron-overload cardiomyopathy independent of iron metabolism: key role of oxidative stress. J Am Heart Assoc 6:e003456. https://doi.org/10.1161/jaha.116.003456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Davis MT, Bartfay WJ (2004) Dose-dependent effects of chronic iron burden on heart aldehyde and acyloin production in mice. Biol Trace Elem Res 99:255–268. https://doi.org/10.1385/bter:99:1-3:255

    Article  PubMed  CAS  Google Scholar 

  24. Davis MT, Bartfay WJ (2004) Ebselen decreases oxygen free radical production and iron concentrations in the hearts of chronically iron-overloaded mice. Biol Res Nurs 6:37–45. https://doi.org/10.1177/1099800403261350

    Article  PubMed  Google Scholar 

  25. Delea TE, Edelsberg J, Sofrygin O, Thomas SK, Baladi JF, Phatak PD, Coates TD (2007) Consequences and costs of noncompliance with iron chelation therapy in patients with transfusion-dependent thalassemia: a literature review. Transfusion 47:1919–1929. https://doi.org/10.1111/j.1537-2995.2007.01416.x

    Article  PubMed  CAS  Google Scholar 

  26. Demougeot C, Van Hoecke M, Bertrand N, Prigent-Tessier A, Mossiat C, Beley A, Marie C (2004) Cytoprotective efficacy and mechanisms of the liposoluble iron chelator 2,2′-dipyridyl in the rat photothrombotic ischemic stroke model. J Pharmacol Exp Ther 311:1080–1087. https://doi.org/10.1124/jpet.104.072744

    Article  PubMed  CAS  Google Scholar 

  27. Elincx-Benizri S, Glik A, Merkel D, Arad M, Freimark D, Kozlova E, Cabantchik I, Hassin-Baer S (2016) Clinical experience with deferiprone treatment for Friedreich ataxia. J Child Neurol 31:1036–1040. https://doi.org/10.1177/0883073816636087

    Article  PubMed  Google Scholar 

  28. Fernandes JL, Sampaio EF, Fertrin K, Coelho OR, Loggetto S, Piga A, Verissimo M, Saad ST (2013) Amlodipine reduces cardiac iron overload in patients with thalassemia major: a pilot trial. Am J Med 126:834–837. https://doi.org/10.1016/j.amjmed.2013.05.002

    Article  PubMed  CAS  Google Scholar 

  29. Gammella E, Maccarinelli F, Buratti P, Recalcati S, Cairo G (2014) The role of iron in anthracycline cardiotoxicity. Front Pharmacol 5:25. https://doi.org/10.3389/fphar.2014.00025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gao X, Campian JL, Qian M, Sun XF, Eaton JW (2009) Mitochondrial DNA damage in iron overload. J Biol Chem 284:4767–4775. https://doi.org/10.1074/jbc.M806235200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Glickstein H, El RB, Shvartsman M, Cabantchik ZI (2005) Intracellular labile iron pools as direct targets of iron chelators: a fluorescence study of chelator action in living cells. Blood 106:3242–3250. https://doi.org/10.1182/blood-2005-02-0460

    Article  PubMed  CAS  Google Scholar 

  32. Glickstein H, El RB, Link G, Breuer W, Konijn AM, Hershko C, Nick H, Cabantchik ZI (2006) Action of chelators in iron-loaded cardiac cells: accessibility to intracellular labile iron and functional consequences. Blood 108:3195–3203. https://doi.org/10.1182/blood-2006-05-020867

    Article  PubMed  CAS  Google Scholar 

  33. Guerra L, Cerbai E, Gessi S, Borea PA, Mugelli A (1996) The effect of oxygen free radicals on calcium current and dihydropyridine binding sites in guinea-pig ventricular myocytes. Br J Pharmacol 118:1278–1284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hamed AA, Elguindy W, Elhenawy YI, Ibrahim RH (2016) Early cardiac involvement and risk factors for the development of arrhythmia in patients with beta-thalassemia major. J Pediatr Hematol Oncol 38:5–11. https://doi.org/10.1097/mph.0000000000000467

    Article  PubMed  CAS  Google Scholar 

  35. Hasinoff BB, Patel D, Wu X (2003) The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radic Biol Med 35:1469–1479

    Article  PubMed  CAS  Google Scholar 

  36. Heper G, Ozensoy U, Korkmaz ME (2009) Persistent atrial standstill and idioventricular rhythm in a patient with thalassemia intermedia. Turk Kardiyol Dern Ars 37:256–259

    PubMed  Google Scholar 

  37. Hershko C (2006) Oral iron chelators: new opportunities and new dilemmas. Haematologica 91:1307–1312

    PubMed  CAS  Google Scholar 

  38. Hershko C (2010) Pathogenesis and management of iron toxicity in thalassemia. Ann N Y Acad Sci 1202:1–9. https://doi.org/10.1111/j.1749-6632.2010.05544.x

    Article  PubMed  CAS  Google Scholar 

  39. Hider RC, Silva AM, Podinovskaia M, Ma Y (2010) Monitoring the efficiency of iron chelation therapy: the potential of nontransferrin-bound iron. Ann N Y Acad Sci 1202:94–99. https://doi.org/10.1111/j.1749-6632.2010.05573.x

    Article  PubMed  CAS  Google Scholar 

  40. Hoffbrand AV, Taher A, Cappellini MD (2012) How I treat transfusional iron overload. Blood 120:3657–3669. https://doi.org/10.1182/blood-2012-05-370098

    Article  PubMed  CAS  Google Scholar 

  41. Huang FW, Pinkus JL, Pinkus GS, Fleming MD, Andrews NC (2005) A mouse model of juvenile hemochromatosis. J Clin Invest 115:2187–2191. https://doi.org/10.1172/jci25049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L, Mutharasan RK, Wu R, Khechaduri A, Jairaj Naik T, Ardehali H (2012) Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. Proc Natl Acad Sci U S A 109:4152–4157. https://doi.org/10.1073/pnas.1119338109

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 124:617–630. https://doi.org/10.1172/jci72931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Isma'eel H, Shamseddeen W, Taher A, Gharzuddine W, Dimassi A, Alam S, Masri L, Khoury M (2009) Ventricular late potentials among thalassemia patients. Int J Cardiol 132:453–455. https://doi.org/10.1016/j.ijcard.2007.08.103

    Article  PubMed  Google Scholar 

  45. Italia K, Colah R, Ghosh K (2015) Experimental animal model to study iron overload and iron chelation and review of other such models. Blood Cells Mol Dis 55:194–199. https://doi.org/10.1016/j.bcmd.2015.06.003

    Article  PubMed  CAS  Google Scholar 

  46. Ito S, Ikuta K, Kato D, Lynda A, Shibusa K, Niizeki N, Toki Y, Hatayama M, Yamamoto M, Shindo M, Iizuka N, Kohgo Y, Fujiya M (2016) In vivo behavior of NTBI revealed by automated quantification system. Int J Hematol 104:175–181. https://doi.org/10.1007/s12185-016-2002-6

    Article  PubMed  Google Scholar 

  47. Jackson LH, Vlachodimitropoulou E, Shangaris P, Roberts TA, Ryan TM, Campbell-Washburn AE, David AL, Porter JB, Lythgoe MF, Stuckey DJ (2017) Non-invasive MRI biomarkers for the early assessment of iron overload in a humanized mouse model of beta-thalassemia. Sci Rep 7:43439. https://doi.org/10.1038/srep43439

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kaiser L, Davis JM, Schwartz KA (2003) Does the gerbil model mimic human iron overload? In: The journal of laboratory and clinical medicine. author reply 420–412, vol 141, pp 419–420

    Google Scholar 

  49. Kaiser L, Davis J, Patterson J, Boyd RF, Olivier NB, Bohart G, Schwartz KA (2007) Iron does not cause arrhythmias in the guinea pig model of transfusional iron overload. Comp Med 57:383–389

    PubMed  CAS  Google Scholar 

  50. Kapsokefalou M, Miller DD (2001) Iron loading and large doses of intravenous ascorbic acid promote lipid peroxidation in whole serum in Guinea pigs. Br J Nutr 85:681–687

    Article  PubMed  CAS  Google Scholar 

  51. Kc S, Carcamo JM, Golde DW (2005) Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J 19:1657–1667. https://doi.org/10.1096/fj.05-4107com

    Article  PubMed  CAS  Google Scholar 

  52. Ke Y, Chen YY, Chang YZ, Duan XL, Ho KP, Jiang DH, Wang K, Qian ZM (2003) Post-transcriptional expression of DMT1 in the heart of rat. J Cell Physiol 196:124–130. https://doi.org/10.1002/jcp.10284

    Article  PubMed  CAS  Google Scholar 

  53. Keizer HG, Pinedo HM, Schuurhuis GJ, Joenje H (1990) Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacol Ther 47:219–231

    Article  PubMed  CAS  Google Scholar 

  54. Khamseekaew J, Kumfu S, Wongjaikam S, Kerdphoo S, Jaiwongkam T, Srichairatanakool S, Fucharoen S, Chattipakorn SC, Chattipakorn N (2017) Effects of iron overload, an iron chelator and a T-type calcium channel blocker on cardiac mitochondrial biogenesis and mitochondrial dynamics in thalassemic mice. Eur J Pharmacol 799:118–127. https://doi.org/10.1016/j.ejphar.2017.02.015

    Article  PubMed  CAS  Google Scholar 

  55. Kim E, Giri SN, Pessah IN (1995) Iron(II) is a modulator of ryanodine-sensitive calcium channels of cardiac muscle sarcoplasmic reticulum. Toxicol Appl Pharmacol 130:57–66. https://doi.org/10.1006/taap.1995.1008

    Article  PubMed  CAS  Google Scholar 

  56. Koppenol WH (2001) The Haber-Weiss cycle--70 years later. Redox Rep 6:229–234. https://doi.org/10.1179/135100001101536373

    Article  PubMed  CAS  Google Scholar 

  57. Kremastinos DT, Farmakis D (2011) Iron overload cardiomyopathy in clinical practice. Circulation 124:2253–2263. https://doi.org/10.1161/circulationaha.111.050773

    Article  PubMed  Google Scholar 

  58. Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 531:81–92

    Article  PubMed  CAS  Google Scholar 

  59. Kumfu S, Chattipakorn S, Srichairatanakool S, Settakorn J, Fucharoen S, Chattipakorn N (2011) T-type calcium channel as a portal of iron uptake into cardiomyocytes of beta-thalassemic mice. Eur J Haematol 86:156–166. https://doi.org/10.1111/j.1600-0609.2010.01549.x

    Article  PubMed  CAS  Google Scholar 

  60. Kumfu S, Chattipakorn S, Chinda K, Fucharoen S, Chattipakorn N (2012) T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice. Eur J Haematol 88:535–548. https://doi.org/10.1111/j.1600-0609.2012.01779.x

    Article  PubMed  CAS  Google Scholar 

  61. Kumfu S, Chattipakorn S, Fucharoen S, Chattipakorn N (2012) Mitochondrial calcium uniporter blocker prevents cardiac mitochondrial dysfunction induced by iron overload in thalassemic mice. Biometals 25:1167–1175. https://doi.org/10.1007/s10534-012-9579-x

    Article  PubMed  CAS  Google Scholar 

  62. Kumfu S, Chattipakorn S, Fucharoen S, Chattipakorn N (2013) Ferric iron uptake into cardiomyocytes of beta-thalassemic mice is not through calcium channels. Drug Chem Toxicol 36:329–334. https://doi.org/10.3109/01480545.2012.726625

    Article  PubMed  CAS  Google Scholar 

  63. Kumfu S, Chattipakorn SC, Fucharoen S, Chattipakorn N (2016) Dual T-type and L-type calcium channel blocker exerts beneficial effects in attenuating cardiovascular dysfunction in iron-overloaded thalassaemic mice. Exp Physiol 101:521–539. https://doi.org/10.1113/ep085517

    Article  PubMed  CAS  Google Scholar 

  64. Kumfu S, Fucharoen S, Chattipakorn SC, Chattipakorn N (2017) Cardiac complications in beta-thalassemia: from mice to men. Exp Biol Med (Maywood, NJ) 242:1126–1135. https://doi.org/10.1177/1535370217708977

    Article  CAS  Google Scholar 

  65. Kumfu S, Khamseekaew J, Palee S, Srichairatanakool S, Fucharoen S, Chattipakorn SC, Chattipakorn N (2018) A combination of an iron chelator with an antioxidant exerts greater efficacy on cardioprotection than monotherapy in iron-overload thalassemic mice. Free Radic Res 52:70–79. https://doi.org/10.1080/10715762.2017.1414208

    Article  PubMed  CAS  Google Scholar 

  66. Ladis V, Chouliaras G, Berdousi H, Kanavakis E, Kattamis C (2005) Longitudinal study of survival and causes of death in patients with thalassemia major in Greece. Ann N Y Acad Sci 1054:445–450. https://doi.org/10.1196/annals.1345.067

    Article  PubMed  Google Scholar 

  67. Lakhal-Littleton S, Wolna M, Carr CA, Miller JJ, Christian HC, Ball V, Santos A, Diaz R, Biggs D, Stillion R, Holdship P, Larner F, Tyler DJ, Clarke K, Davies B, Robbins PA (2015) Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function. Proc Natl Acad Sci U S A 112:3164–3169. https://doi.org/10.1073/pnas.1422373112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Lakhal-Littleton S, Wolna M, Chung YJ, Christian HC, Heather LC, Brescia M, Ball V, Diaz R, Santos A, Biggs D, Clarke K, Davies B, Robbins PA (2016) An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. eLife 5. https://doi.org/10.7554/eLife.19804

  69. Laurita KR, Chuck ET, Yang T, Dong WQ, Kuryshev YA, Brittenham GM, Rosenbaum DS, Brown AM (2003) Optical mapping reveals conduction slowing and impulse block in iron-overload cardiomyopathy. J Lab Clin Med 142:83–89. https://doi.org/10.1016/s0022-2143(03)00060-x

    Article  PubMed  CAS  Google Scholar 

  70. Lu JP, Hayashi K (1995) Transferrin receptor distribution and iron deposition in the hepatic lobule of iron-overloaded rats. Pathol Int 45:202–206

    Article  PubMed  CAS  Google Scholar 

  71. Ludke AR, Sharma AK, Akolkar G, Bajpai G, Singal PK (2012) Downregulation of vitamin C transporter SVCT-2 in doxorubicin-induced cardiomyocyte injury. Am J Physiol Cell Physiol 303:C645–C653. https://doi.org/10.1152/ajpcell.00186.2012

    Article  PubMed  CAS  Google Scholar 

  72. Mancuso L, Mancuso A, Bevacqua E, Rigano P (2009) Electrocardiographic abnormalities in thalassemia patients with heart failure. Cardiovasc Hematol Disord Drug Targets 9:29–35

    Article  PubMed  CAS  Google Scholar 

  73. Marques VB, Nascimento TB, Ribeiro RF Jr, Broseghini-Filho GB, Rossi EM, Graceli JB, dos Santos L (2015) Chronic iron overload in rats increases vascular reactivity by increasing oxidative stress and reducing nitric oxide bioavailability. Life Sci 143:89–97. https://doi.org/10.1016/j.lfs.2015.10.034

    Article  PubMed  CAS  Google Scholar 

  74. Marx JJ (2003) Pathophysiology and treatment of iron overload in thalassemia patients in tropical countries. Adv Exp Med Biol 531:57–68

    Article  PubMed  CAS  Google Scholar 

  75. McNamara L, Gordeuk VR, MacPhail AP (2005) Ferroportin (Q248H) mutations in African families with dietary iron overload. J Gastroenterol Hepatol 20:1855–1858. https://doi.org/10.1111/j.1440-1746.2005.03930.x

    Article  PubMed  CAS  Google Scholar 

  76. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229. https://doi.org/10.1124/pr.56.2.6

    Article  PubMed  CAS  Google Scholar 

  77. Moon SN, Han JW, Hwang HS, Kim MJ, Lee SJ, Lee JY, Oh CK, Jeong DC (2011) Establishment of secondary iron overloaded mouse model: evaluation of cardiac function and analysis according to iron concentration. Pediatr Cardiol 32:947–952. https://doi.org/10.1007/s00246-011-0019-4

    Article  PubMed  Google Scholar 

  78. Nieminen AL, Schwartz J, Hung HI, Blocker ER, Gooz M, Lemasters JJ (2014) Mitoferrin-2 (MFRN2) Regulates the Electrogenic Mitochondrial Calcium Uniporter and Interacts Physically with MCU. Biophys J 106:581a

    Article  Google Scholar 

  79. Nisli K, Taner Y, Naci O, Zafer S, Zeynep K, Aygun D, Umrah A, Rukiye E, Turkan E (2010) Electrocardiographic markers for the early detection of cardiac disease in patients with beta-thalassemia major. J Pediatr 86:159–162. https://doi.org/10.2223/JPED.1982

    Article  Google Scholar 

  80. Obejero-Paz CA, Yang T, Dong WQ, Levy MN, Brittenham GM, Kuryshev YA, Brown AM (2003) Deferoxamine promotes survival and prevents electrocardiographic abnormalities in the gerbil model of iron-overload cardiomyopathy. J Lab Clin Med 141:121–130. https://doi.org/10.1067/mlc.2003.18

    Article  PubMed  CAS  Google Scholar 

  81. Oduor H, Minniti CP, Brofferio A, Gharib AM, Abd-Elmoniem KZ, Hsieh MM, Tisdale JF, Fitzhugh CD (2017) Severe cardiac iron toxicity in two adults with sickle cell disease. Transfusion 57:700–704. https://doi.org/10.1111/trf.13961

    Article  PubMed  CAS  Google Scholar 

  82. Ohashi N, Mitamura H, Tanimoto K, Fukuda Y, Kinebuchi O, Kurita Y, Shiroshita-Takeshita A, Miyoshi S, Hara M, Takatsuki S, Ogawa S (2004) A comparison between calcium channel blocking drugs with different potencies for T- and L-type channels in preventing atrial electrical remodeling. J Cardiovasc Pharmacol 44:386–392

    Article  PubMed  CAS  Google Scholar 

  83. Otto-Duessel M, Aguilar M, Moats R, Wood JC (2007) Antioxidant-mediated effects in a gerbil model of iron overload. Acta Haematol 118:193–199. https://doi.org/10.1159/000109879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Otto-Duessel M, Aguilar M, Nick H, Moats R, Wood JC (2007) Comparison of twice-daily vs once-daily deferasirox dosing in a gerbil model of iron cardiomyopathy. Exp Hematol 35:1069–1073. https://doi.org/10.1016/j.exphem.2007.04.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Otto-Duessel M, Brewer C, Wood JC (2011) Interdependence of cardiac iron and calcium in a murine model of iron overload. Transl Res 157:92–99. https://doi.org/10.1016/j.trsl.2010.11.002

    Article  PubMed  CAS  Google Scholar 

  86. Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP, Backx PH (2003) L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9:1187–1194. https://doi.org/10.1038/nm920

    Article  PubMed  CAS  Google Scholar 

  87. Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH (2004) Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation 109:1877–1885. https://doi.org/10.1161/01.cir.0000124229.40424.80

    Article  PubMed  CAS  Google Scholar 

  88. Oudit GY, Trivieri MG, Khaper N, Liu PP, Backx PH (2006) Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med (Berlin, Germany) 84:349–364. https://doi.org/10.1007/s00109-005-0029-x

    Article  CAS  Google Scholar 

  89. Pan X, Kelly S, Melin-Aldana H, Malladi P, Whitington PF (2010) Novel mechanism of fetal hepatocyte injury in congenital alloimmune hepatitis involves the terminal complement cascade. Hepatology (Baltimore, Md) 51:2061–2068. https://doi.org/10.1002/hep.23581

    Article  Google Scholar 

  90. Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J (2009) Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol 29:1007–1016. https://doi.org/10.1128/mcb.01685-08

    Article  PubMed  CAS  Google Scholar 

  91. Payne RM (2011) The heart in Friedreich's ataxia: basic findings and clinical implications. Prog Pediatr Cardiol 31:103–109. https://doi.org/10.1016/j.ppedcard.2011.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pennell DJ, Berdoukas V, Karagiorga M, Ladis V, Piga A, Aessopos A, Gotsis ED, Tanner MA, Smith GC, Westwood MA, Wonke B, Galanello R (2006) Randomized controlled trial of deferiprone or deferoxamine in beta-thalassemia major patients with asymptomatic myocardial siderosis. Blood 107:3738–3744. https://doi.org/10.1182/blood-2005-07-2948

    Article  PubMed  CAS  Google Scholar 

  93. Pennell DJ, Porter JB, Cappellini MD, El-Beshlawy A, Chan LL, Aydinok Y, Elalfy MS, Sutcharitchan P, Li CK, Ibrahim H, Viprakasit V, Kattamis A, Smith G, Habr D, Domokos G, Roubert B, Taher A (2010) Efficacy of deferasirox in reducing and preventing cardiac iron overload in beta-thalassemia. Blood 115:2364–2371. https://doi.org/10.1182/blood-2009-04-217455

    Article  PubMed  CAS  Google Scholar 

  94. Pennell DJ, Porter JB, Piga A, Lai Y, El-Beshlawy A, Belhoul KM, Elalfy M, Yesilipek A, Kilinc Y, Lawniczek T, Habr D, Weisskopf M, Zhang Y, Aydinok Y (2014) A 1-year randomized controlled trial of deferasirox vs deferoxamine for myocardial iron removal in beta-thalassemia major (CORDELIA). Blood 123:1447–1454. https://doi.org/10.1182/blood-2013-04-497842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Pepe A, Meloni A, Capra M, Cianciulli P, Prossomariti L, Malaventura C, Putti MC, Lippi A, Romeo MA, Bisconte MG, Filosa A, Caruso V, Quarta A, Pitrolo L, Missere M, Midiri M, Rossi G, Positano V, Lombardi M, Maggio A (2011) Deferasirox, deferiprone and desferrioxamine treatment in thalassemia major patients: cardiac iron and function comparison determined by quantitative magnetic resonance imaging. Haematologica 96:41–47. https://doi.org/10.3324/haematol.2009.019042

    Article  PubMed  CAS  Google Scholar 

  96. Petrat F, Rauen U, de Groot H (1999) Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using the fluorescent probe, phen green SK. Hepatology (Baltimore, Md) 29:1171–1179. https://doi.org/10.1002/hep.510290435

    Article  CAS  Google Scholar 

  97. Petrat F, Weisheit D, Lensen M, de Groot H, Sustmann R, Rauen U (2002) Selective determination of mitochondrial chelatable iron in viable cells with a new fluorescent sensor. Biochem J 362:137–147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Piga A, Longo F, Duca L, Roggero S, Vinciguerra T, Calabrese R, Hershko C, Cappellini MD (2009) High nontransferrin bound iron levels and heart disease in thalassemia major. Am J Hematol 84:29–33. https://doi.org/10.1002/ajh.21317

    Article  PubMed  CAS  Google Scholar 

  99. Piga A, Roggero S, Salussolia I, Massano D, Serra M, Longo F (2010) Deferiprone. Ann N Y Acad Sci 1202:75–78. https://doi.org/10.1111/j.1749-6632.2010.05586.x

    Article  PubMed  CAS  Google Scholar 

  100. Poggi M, Sorrentino F, Pugliese P, Smacchia MP, Daniele C, Equitani F, Terlizzi F, Guitarrini MR, Monti S, Maffei L, Losardo A, Pasin M, Toscano V (2016) Longitudinal changes of endocrine and bone disease in adults with beta-thalassemia major receiving different iron chelators over 5 years. Ann Hematol 95:757–763. https://doi.org/10.1007/s00277-016-2633-y

    Article  PubMed  CAS  Google Scholar 

  101. Poggiali E, Cassinerio E, Zanaboni L, Cappellini MD (2012) An update on iron chelation therapy. Blood Transfus 10:411–422. https://doi.org/10.2450/2012.0008-12

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pootrakul P, Breuer W, Sametband M, Sirankapracha P, Hershko C, Cabantchik ZI (2004) Labile plasma iron (LPI) as an indicator of chelatable plasma redox activity in iron-overloaded beta-thalassemia/HbE patients treated with an oral chelator. Blood 104:1504–1510. https://doi.org/10.1182/blood-2004-02-0630

    Article  PubMed  CAS  Google Scholar 

  103. Popelova O, Sterba M, Simunek T, Mazurova Y, Guncova I, Hroch M, Adamcova M, Gersl V (2008) Deferiprone does not protect against chronic anthracycline cardiotoxicity in vivo. J Pharmacol Exp Ther 326:259–269. https://doi.org/10.1124/jpet.108.137604

    Article  PubMed  CAS  Google Scholar 

  104. Porter JB (2010) Deferasirox--current knowledge and future challenges. Ann N Y Acad Sci 1202:87–93. https://doi.org/10.1111/j.1749-6632.2010.05582.x

    Article  PubMed  CAS  Google Scholar 

  105. Porter JB, Garbowski M (2014) The pathophysiology of transfusional iron overload. Hematol Oncol Clin North Am 28(683–701):vi–701. https://doi.org/10.1016/j.hoc.2014.04.003

    Article  Google Scholar 

  106. Porter JB, Rafique R, Srichairatanakool S, Davis BA, Shah FT, Hair T, Evans P (2005) Recent insights into interactions of deferoxamine with cellular and plasma iron pools: implications for clinical use. Ann N Y Acad Sci 1054:155–168. https://doi.org/10.1196/annals.1345.018

    Article  PubMed  CAS  Google Scholar 

  107. Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2013) 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug Des Devel Ther 7:1157–1178. https://doi.org/10.2147/dddt.s49763

    Article  PubMed  PubMed Central  Google Scholar 

  108. Randell EW, Parkes JG, Olivieri NF, Templeton DM (1994) Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. J Biol Chem 269:16046–16053

    PubMed  CAS  Google Scholar 

  109. Rauen U, Petrat F, Sustmann R, de Groot H (2004) Iron-induced mitochondrial permeability transition in cultured hepatocytes. J Hepatol 40:607–615. https://doi.org/10.1016/j.jhep.2003.12.021

    Article  PubMed  CAS  Google Scholar 

  110. Richardson DR, Lane DJ, Becker EM, Huang ML, Whitnall M, Suryo Rahmanto Y, Sheftel AD, Ponka P (2010) Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A 107:10775–10782. https://doi.org/10.1073/pnas.0912925107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Rideau A, Mangeat B, Matthes T, Trono D, Beris P (2007) Molecular mechanism of hepcidin deficiency in a patient with juvenile hemochromatosis. Haematologica 92:127–128

    Article  PubMed  CAS  Google Scholar 

  112. Roetto A, Daraio F, Alberti F, Porporato P, Cali A, De Gobbi M, Camaschella C (2002) Hemochromatosis due to mutations in transferrin receptor 2. Blood Cells Mol Dis 29:465–470

    Article  PubMed  CAS  Google Scholar 

  113. Rose RA, Sellan M, Simpson JA, Izaddoustdar F, Cifelli C, Panama BK, Davis M, Zhao D, Markhani M, Murphy GG, Striessnig J, Liu PP, Heximer SP, Backx PH (2011) Iron overload decreases CaV1.3-dependent L-type Ca2+ currents leading to bradycardia, altered electrical conduction, and atrial fibrillation. Circ Arrhythm Electrophysiol 4:733–742. https://doi.org/10.1161/circep.110.960401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Schumacher HR Jr (1998) Arthropathy in hemochromatosis. Hosp Pract (1995) 33:81–86 89–90, 93; discussion 93–84

    Article  Google Scholar 

  115. Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, Bubes V, Manson JE, Glynn RJ, Gaziano JM (2008) Vitamins E and C in the prevention of cardiovascular disease in men: the physicians' health study II randomized controlled trial. JAMA 300:2123–2133. https://doi.org/10.1001/jama.2008.600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Shan HL, Wang Y, Wu JW, Hang PZ, Li X, Sun LH, Qi JC, Mao YY, Sun ZD, Du ZM (2013) Verapamil reverses cardiac iron overload in streptozocin-induced diabetic rats. Naunyn Schmiedeberg's Arch Pharmacol 386:645–650. https://doi.org/10.1007/s00210-013-0863-2

    Article  CAS  Google Scholar 

  117. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440:96–100. https://doi.org/10.1038/nature04512

    Article  PubMed  CAS  Google Scholar 

  118. Silvilairat S, Charoenkwan P, Saekho S, Tantiworawit A, Phrommintikul A, Srichairatanakool S, Chattipakorn N (2016) Heart rate variability for early detection of cardiac Iron deposition in patients with transfusion-dependent thalassemia. PLoS One 11:e0164300. https://doi.org/10.1371/journal.pone.0164300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Simunek T, Sterba M, Popelova O, Adamcova M, Hrdina R, Gersl V (2009) Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 61:154–171

    Article  PubMed  CAS  Google Scholar 

  120. Sripetchwandee J, Sanit J, Chattipakorn N, Chattipakorn SC (2013) Mitochondrial calcium uniporter blocker effectively prevents brain mitochondrial dysfunction caused by iron overload. Life Sci 92:298–304. https://doi.org/10.1016/j.lfs.2013.01.004

    Article  PubMed  CAS  Google Scholar 

  121. Sripetchwandee J, KenKnight SB, Sanit J, Chattipakorn S, Chattipakorn N (2014) Blockade of mitochondrial calcium uniporter prevents cardiac mitochondrial dysfunction caused by iron overload. Acta Physiol (Oxford, England) 210:330–341. https://doi.org/10.1111/apha.12162

    Article  CAS  Google Scholar 

  122. Sripetchwandee J, Pipatpiboon N, Chattipakorn N, Chattipakorn S (2014) Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity. PLoS One 9:e85115. https://doi.org/10.1371/journal.pone.0085115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Sripetchwandee J, Wongjaikam S, Krintratun W, Chattipakorn N, Chattipakorn SC (2016) A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-beta accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload. Neuroscience 332:191–202. https://doi.org/10.1016/j.neuroscience.2016.07.003

    Article  PubMed  CAS  Google Scholar 

  124. Sugishita K, Asakawa M, Usui S, Takahashi T (2009) A case of iron overload cardiomyopathy: beneficial effects of iron chelating agent and calcium channel blocker on left ventricular dysfunction. Int Heart J 50:829–838

    Article  PubMed  Google Scholar 

  125. Tantiworawit A, Charoenkwan P, Hantrakool S, Choeyprasert W, Sivasomboon C, Sanguansermsri T (2016) Iron overload in non-transfusion-dependent thalassemia: association with genotype and clinical risk factors. Int J Hematol 103:643–648. https://doi.org/10.1007/s12185-016-1991-5

    Article  PubMed  CAS  Google Scholar 

  126. Thephinlap C, Phisalaphong C, Lailerd N, Chattipakorn N, Winichagoon P, Vadolas J, Fucharoen S, Porter JB, Srichairatanakool S (2011) Reversal of cardiac iron loading and dysfunction in thalassemic mice by curcuminoids. Med Chem (Shariqah (United Arab Emirates)) 7:62–69

    Article  CAS  Google Scholar 

  127. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA (1999) A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 399:70–75. https://doi.org/10.1038/19986

    Article  PubMed  CAS  Google Scholar 

  128. Tsushima RG, Wickenden AD, Bouchard RA, Oudit GY, Liu PP, Backx PH (1999) Modulation of iron uptake in heart by L-type Ca2+ channel modifiers: possible implications in iron overload. Circ Res 84:1302–1309

    Article  PubMed  CAS  Google Scholar 

  129. van Dalen EC, van der Pal HJ, Kremer LC (2016) Different dosage schedules for reducing cardiotoxicity in people with cancer receiving anthracycline chemotherapy. Cochrane Database Syst Rev 3:Cd005008. https://doi.org/10.1002/14651858.CD005008.pub4

    Article  PubMed  Google Scholar 

  130. Vassort G, Talavera K, Alvarez JL (2006) Role of T-type Ca2+ channels in the heart. Cell Calcium 40:205–220. https://doi.org/10.1016/j.ceca.2006.04.025

    Article  PubMed  CAS  Google Scholar 

  131. Velasco-Sanchez D, Aracil A, Montero R, Mas A, Jimenez L, O'Callaghan M, Tondo M, Capdevila A, Blanch J, Artuch R, Pineda M (2011) Combined therapy with idebenone and deferiprone in patients with Friedreich's ataxia. Cerebellum 10:1–8. https://doi.org/10.1007/s12311-010-0212-7

    Article  PubMed  CAS  Google Scholar 

  132. Wang CY, Knutson MD (2013) Hepatocyte divalent metal-ion transporter-1 is dispensable for hepatic iron accumulation and non-transferrin-bound iron uptake in mice. Hepatology (Baltimore, Md) 58:788–798. https://doi.org/10.1002/hep.26401

    Article  CAS  Google Scholar 

  133. Wang M, Liu RR, Wang CJ, Kang W, Yang GH, Zhong WN, Lai YR (2015) Combined histological and hematological assessment of iron-induced organ damage in a gerbil model of iron overload. Am J Transl Res 7:385–392

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Whitington PF (2007) Neonatal hemochromatosis: a congenital alloimmune hepatitis. Semin Liver Dis 27:243–250. https://doi.org/10.1055/s-2007-985069

    Article  PubMed  CAS  Google Scholar 

  135. Wijarnpreecha K, Siri-Angkul N, Shinlapawittayatorn K, Charoenkwan P, Silvilairat S, Siwasomboon C, Visarutratna P, Srichairatanakool S, Tantiworawit A, Phrommintikul A, Chattipakorn SC, Chattipakorn N (2015) Heart rate variability as an alternative Indicator for identifying cardiac iron status in non-transfusion dependent thalassemia patients. PLoS One 10:e0130837. https://doi.org/10.1371/journal.pone.0130837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Wongjaikam S, Kumfu S, Chattipakorn SC, Fucharoen S, Chattipakorn N (2015) Current and future treatment strategies for iron overload cardiomyopathy. Eur J Pharmacol 765:86–93. https://doi.org/10.1016/j.ejphar.2015.08.017

    Article  PubMed  CAS  Google Scholar 

  137. Wongjaikam S, Kumfu S, Khamseekaew J, Sripetchwandee J, Srichairatanakool S, Fucharoen S, Chattipakorn SC, Chattipakorn N (2016) Combined iron chelator and antioxidant exerted greater efficacy on cardioprotection than Monotherapy in Iron-overloaded rats. PLoS One 11:e0159414. https://doi.org/10.1371/journal.pone.0159414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wongjaikam S, Kumfu S, Khamseekaew J, Chattipakorn SC, Chattipakorn N (2017) Restoring the impaired cardiac calcium homeostasis and cardiac function in iron overload rats by the combined deferiprone and N-acetyl cysteine. Sci Rep 7:44460. https://doi.org/10.1038/srep44460

    Article  PubMed  PubMed Central  Google Scholar 

  139. Wood JC, Enriquez C, Ghugre N, Otto-Duessel M, Aguilar M, Nelson MD, Moats R, Coates TD (2005) Physiology and pathophysiology of iron cardiomyopathy in thalassemia. Ann N Y Acad Sci 1054:386–395. https://doi.org/10.1196/annals.1345.047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Wood JC, Otto-Duessel M, Aguilar M, Nick H, Nelson MD, Coates TD, Pollack H, Moats R (2005) Cardiac iron determines cardiac T2*, T2, and T1 in the gerbil model of iron cardiomyopathy. Circulation 112:535–543. https://doi.org/10.1161/circulationaha.104.504415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Xie LH, Doye AA, Conley E, Gwathmey JK (2013) Sickle cell anemia: the impact of discovery, politics, and business. J Health Care Poor Underserved 24:147–158. https://doi.org/10.1353/hpu.2014.0008

    Article  PubMed  Google Scholar 

  142. Xu X, Persson HL, Richardson DR (2005) Molecular pharmacology of the interaction of anthracyclines with iron. Mol Pharmacol 68:261–271. https://doi.org/10.1124/mol.105.013383

    Article  PubMed  CAS  Google Scholar 

  143. Xu W, Barrientos T, Mao L, Rockman HA, Sauve AA, Andrews NC (2015) Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep 13:533–545. https://doi.org/10.1016/j.celrep.2015.09.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Yang T, Dong WQ, Kuryshev YA, Obejero-Paz C, Levy MN, Brittenham GM, Kiatchoosakun S, Kirkpatrick D, Hoit BD, Brown AM (2002) Bimodal cardiac dysfunction in an animal model of iron overload. J Lab Clin Med 140:263–271

    Article  PubMed  CAS  Google Scholar 

  145. Yang T, Brittenham GM, Dong WQ, Levy MN, Obejero-Paz CA, Kuryshev YA, Brown AM (2003) Deferoxamine prevents cardiac hypertrophy and failure in the gerbil model of iron-induced cardiomyopathy. J Lab Clin Med 142:332–340. https://doi.org/10.1016/s0022-2143(03)00135-5

    Article  PubMed  CAS  Google Scholar 

  146. Zhang Y, Wang H, Cui L, Zhang Y, Liu Y, Chu X, Liu Z, Zhang J, Chu L (2015) Continuing treatment with Salvia miltiorrhiza injection attenuates myocardial fibrosis in chronic iron-overloaded mice. PLoS One 10:e0124061. https://doi.org/10.1371/journal.pone.0124061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health (R01s HL97979 and HL133294 to LHX), American Heart Association (Grant-in-Aid to LHX), the National Science and Technology Development Agency Thailand (NSTDA Research Chair grant to NC), and the Thailand Research Fund (RTA6080003 to SCC and RGJ to SCC and SW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Hua Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordan, R., Wongjaikam, S., Gwathmey, J.K. et al. Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update. Heart Fail Rev 23, 801–816 (2018). https://doi.org/10.1007/s10741-018-9700-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-018-9700-5

Keywords

Navigation