Skip to main content
Log in

Analyzing the radial geodesics of the Campanelli–Lousto solutions

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

When dealing with a spacetime, one usually searches for singularities, black holes, white holes and wormholes due to their importance to the motion of particles. There is a family of solution of the Brans–Dicke vacuum equations that has not been fully studied from this perspective. In this paper, I study some properties of this family and find the complete set of solutions that avoids singularity at the point where the metric diverges or degenerates. The possible changes in the metric signature when passing through this point is analyzed. In addition, I also study the radial geodesics and obtain the solutions of some particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It is defined as .

  2. The solution (4)–(6) is not exactly the same as that of Fisher because the scalar fields are different. In the case of Eq. (6), the scalar field becomes trivial for \(m=-n\).

  3. For the case \(r<r_0\) and m either an even integer or an irreducible fraction of the type even/odd, the situation is a little bit more involved because setting \(\dot{R}_i=0\) no longer means releasing the particle from rest at \(r_i\) (r is a time coordinate in this case). I shall not pursue this issue here.

  4. Notice that the expression \(1-n-(2-n)\frac{r_0}{2r}\) can be recast as \((1-n)(1-r_c/r)\), which clearly changes its sign.

  5. Using the plus sign in Eq. (43) one can show that the particle can come back to the universe \(r\in (r_m,\infty )\) if an appropriate initial velocity is given to the particle when it is at the other universe.

References

  1. Brans, C., Dicke, R.H.: Phys. Rev. 124, 925 (1961)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Faraoni, V., Capozziello, S.: Beyond Einstein Gravity. Springer Science+Business Media, Berlin (2011)

    Book  MATH  Google Scholar 

  3. Will, C.: Space Sci. Rev. 148, 3 (2009)

    Article  ADS  Google Scholar 

  4. Banerjee, N., Pavón, D.: Phys. Rev. D 63, 043504 (2001)

    Article  ADS  Google Scholar 

  5. Sen, A.A., Sen, S., Sethi, S.: Phys. Rev. D 63, 107501 (2001)

    Article  ADS  Google Scholar 

  6. La, D., Steinhardt, P.J.: Phys. Rev. Lett. 62, 376 (1989)

    Article  ADS  Google Scholar 

  7. Campanelli, M., Lousto, C.: Int. J. Mod. Phys. D 02, 451 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bhadra, A., Sarkar, K.: Gen. Relativ. Gravit. 37, 2189 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Vanzo, L., Zerbini, S., Faraoni, V.: Phys. Rev. D 86, 084031 (2012)

    Article  ADS  Google Scholar 

  10. Formiga, J.B.: Phys. Rev. D 83, 087502 (2011)

    Article  ADS  Google Scholar 

  11. Formiga, J.B., Almeida, T.S.: Int. J. Mod. Phys. D 23, 1450086 (2014). doi:10.1142/S0218271814500862

    Article  ADS  Google Scholar 

  12. Hochberg, D., Visser, M.: Phys. Rev. D 56, 4745 (1997)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Formiga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formiga, J.B. Analyzing the radial geodesics of the Campanelli–Lousto solutions. Gen Relativ Gravit 47, 146 (2015). https://doi.org/10.1007/s10714-015-1967-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1967-4

Keywords

Navigation