Skip to main content
Log in

Partial and complete observables for Hamiltonian constrained systems

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We will pick up the concepts of partial and complete observables introduced by Rovelli in Conceptional Problems in Quantum Gravity, Birkhäuser, Boston (1991); Class Quant Grav, 8:1895 (1991); Phys Rev, D65:124013 (2002); Quantum Gravity, Cambridge University Press, Cambridge (2007) in order to construct Dirac observables in gauge systems. We will generalize these ideas to an arbitrary number of gauge degrees of freedom. Different methods to calculate such Dirac observables are developed. For background independent field theories we will show that partial and complete observables can be related to Kuchař’s Bubble-Time Formalism (J Math Phys, 13:768, 1972). Moreover one can define a non-trivial gauge action on the space of complete observables and also state the Poisson brackets of these functions. Additionally we will investigate, whether it is possible to calculate Dirac observables starting with partially invariant partial observables, for instance functions, which are invariant under the spatial diffeomorphism group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I. (ed.) (1988) Dynamical Systems III. Springer, Berlin

    Google Scholar 

  2. DeWitt, B.S.: The Quantization of geometry. In: Witten, L. (ed.) (1962) Gravitation: An Introduction to Current Research. Wiley, New York (1962)

  3. DeWitt B.S. (1967). Phys. Rev. 160: 1113

    Article  MATH  ADS  Google Scholar 

  4. Dittrich, B.: Partial and complete observables for canonical general relativity. Class. Quant. Grav. 23, 6155 (2006). E-print: gr-qc/0507106

    Google Scholar 

  5. Dittrich, B., Tambornino, J.: A perturbative approach to Dirac observables and their space–time algebra. Class. Quant. Grav. 24, 757 (2007). E-print: gr-qc/0610060

    Google Scholar 

  6. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity II: Finite dimensional examples. Class. Quant. Grav. 23, 1067–1088 (2006). E-print:gr-qc/0411139

    Google Scholar 

  7. Goldberg J.N., Lewandowski J. and Stornaiolo C. (1992). Degeneracy in loop variables. Commun. Math. Phys. 148: 377

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Henneaux M. and Teitelboim C. (1992). Quantization of Gauge Systems. Princeton University Press, Princeton

    MATH  Google Scholar 

  9. Isham C.J. and Kuchař K.V. (1985). Representations of spacetime diffeomorphisms. II. Canonical geometrodynamics. Ann. Phys. 164: 316

    Article  ADS  Google Scholar 

  10. Jacobson T. and Romano J.D. (1993). The Spin Holonomy Group in General Relativity. Commun. Math. Phys. 155: 261

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Kouletsis, I., Kucha  K.V.: Symplectomorphisms in history phase space: bosonic string model. E-print: gr-qc/0108022

  12. Kuchař K.V. (1971). Canonical quantization of cylindrical gravitational waves. Phys. Rev. D4: 955

    ADS  Google Scholar 

  13. Kuchař K.V. (1972). A bubble-time canonical formalism for geometrodynamics. J. Math. Phys. 13: 768

    Article  Google Scholar 

  14. Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics. World Scientific, Singapore (1992)

  15. Lusanna, L.: Towards a unified description of the four interactions in terms of Dirac–Bergmann observables. E-print: hep-th/9907081

  16. Pons, J.M., Salisbury, D.C.: The issue of time in generally covariant theories and the Komar–Bergmann approach to observables in general relativity. Phys. Rev. D71, 124012 (2005). E-print: gr-qc/0503013

  17. Reed M. and Simon B (1980). Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, London

    MATH  Google Scholar 

  18. Rovelli, C.: In: Ashtekar, A., Stachel, J. (eds.) Conceptional Problems in Quantum Gravity, p. 126. Birkhäuser, Boston (1991)

  19. Rovelli C. (1991). What is observable in classical and quantum gravity?. Class. Quant. Grav. 8: 1895

    Article  Google Scholar 

  20. Rovelli C. (2002). Partial observables. Phys. Rev. D65: 124013

    ADS  MathSciNet  Google Scholar 

  21. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2007, in press)

  22. Savvidou, N.: General relativity histories theory I: The spacetime character of the canonical description. Class. Quant. Grav. 21, 615 (2004). E-print: gr-qc/0306034

    Google Scholar 

  23. Savvidou, N.: General relativity histories theory II: Invariance groups. Class. Quant. Grav. 21, 631 (2004). E-print: gr-qc/0306036

  24. Shanmugadhasan S. (1973). Canonical formalism for degenerate Lagrangians. J. Math. Phys. 14: 677

    Article  MATH  Google Scholar 

  25. Smolin, L.: Time, measurement and information loss in quantum cosmology. In: Hu, B.L. et al. (eds.) College Park 1993, Directions in General Relativity, vol. 2, p. 237–292. Cambridge University Press, London, 1993, e-print: gr-qc/9301016 (2005)

  26. Torre C.G. (1992). Is general relativity an ‘already parametrized’ theory?. Phys. Rev. D46: 3231

    ADS  Google Scholar 

  27. Torre, C.G.: Gravitational observables and local symmetries. Phys. Rev. D48, 2373 (1993). E-print: gr-qc/9306030

  28. Torre C.G. (1991). A complete set of observables for cylindrically symmetric gravita tional fields. Class. Quant. Grav. 8: 1895

    Article  ADS  MathSciNet  Google Scholar 

  29. Thiemann, T.: The phoenix project: master constraint programme for loop quantum gravity. Class. Quant. Grav. 23, 2211–2248 (2006). E-print: gr-qc/0305080

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Dittrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittrich, B. Partial and complete observables for Hamiltonian constrained systems. Gen Relativ Gravit 39, 1891–1927 (2007). https://doi.org/10.1007/s10714-007-0495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0495-2

Keywords

Navigation