Skip to main content

Advertisement

Log in

A sharp Blaschke–Santaló inequality for \(\alpha \)-concave functions

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We define a new transform on \(\alpha \)-concave functions, which we call the \(\sharp \)-transform. Using this new transform, we prove a sharp Blaschke–Santaló inequality for \(\alpha \)-concave functions, and characterize the equality case. This extends the known functional Blaschke–Santaló inequality of Artstein-Avidan, Klartag and Milman, and strengthens a result of Bobkov. Finally, we prove that the \(\sharp \)-transform is a duality transform when restricted to its image. However, this transform is neither surjective nor injective on the entire class of \(\alpha \)-concave functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artstein-Avidan, S., Klartag, B., Milman, V.: The Santaló point of a function, and a functional form of the Santaló inequality. Mathematika 51(1–2), 33 (2010)

    MathSciNet  Google Scholar 

  2. Artstein-Avidan, S., Milman, V.: A characterization of the concept of duality. Electron. Res. Announc. Math. Sci. 14, 42–59 (2007)

    MathSciNet  Google Scholar 

  3. Artstein-Avidan, S., Milman, V.: Hidden structures in the class of convex functions and a new duality transform. J. Eur. Math. Soc. 13(4), 975–1004 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Artstein-Avidan, S., Slomka, B.: A Note on Santaló Inequality for the Polarity Transform and Its Reverse (2013). arXiv:1303.3114

  5. Avriel, M.: r-Convex functions. Math. Program. 2(1), 309–323 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ball, K.: Isometric Problems in \(\ell _p\) and Sections of Convex Sets. PhD thesis, University of Cambridge (1987)

  7. Bobkov, S.G.: Convex bodies and norms associated to convex measures. Probab. Theory Rel. Fields 147(1–2), 303–332 (2009)

    MathSciNet  Google Scholar 

  8. Borell, C.: Convex measures on locally convex spaces. Arkiv för Matematik 12(1–2), 239–252 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Borell, C.: Convex set functions in d-space. Periodica Mathematica Hungarica 6(2), 111–136 (1975)

    Article  MathSciNet  Google Scholar 

  10. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Google Scholar 

  11. Fradelizi, M., Meyer, M.: Some functional forms of Blaschke–Santaló inequality. Mathematische Zeitschrift 256(2), 379–395 (2006)

    Article  MathSciNet  Google Scholar 

  12. Meyer, M., Pajor, A.: On the Blaschke–Santaló inequality. Archiv der Mathematik 55(1), 82–93 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Milman, V.: A certain transformation of convex functions and a duality of the \(\beta \) and \(\delta \) characteristics of a B-space. Doklady Akademii Nauk SSSR 187, 33–35 (1969)

    MathSciNet  Google Scholar 

  14. Milman, V.: Geometric theory of Banach spaces, part II: geometry of the unit sphere. Russ. Math. Surv. 26(6), 79–163 (1971)

    Article  MathSciNet  Google Scholar 

  15. Milman, V.: Duality of certain geometric characteristics of a Banach space. Teorija Funkcii, Funkcionalnyi Analiz i ih Prilozenija 18, 120–137 (1973)

    MathSciNet  Google Scholar 

  16. Milman, V.: Geometrization of probability. In: Kapranov, M., Kolyada, S., Manin, Y.I., Moree, P., Potyagailo, L. (eds.) Geometry and Dynamics of Groups and Spaces, volume 265 of Progress in Mathematics, pp. 647–667. Birkhäuser, Basel (2008)

  17. Rotem, L.: Support functions and mean width for \(\alpha \)-concave functions. Adv. Math. 243, 168–186 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liran Rotem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotem, L. A sharp Blaschke–Santaló inequality for \(\alpha \)-concave functions. Geom Dedicata 172, 217–228 (2014). https://doi.org/10.1007/s10711-013-9917-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-013-9917-3

Keywords

Mathematics Subject Classification (2000)

Navigation