Skip to main content
Log in

Red drum Sciaenops ocellatus growth and expression of bile salt-dependent lipase in response to increasing dietary lipid supplementation

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Sciaenops ocellatus has a long history in aquaculture and many difficulties associated with its commercial culture have been addressed and successfully resolved; nevertheless, further research in lipid nutrition could address more comprehensive questions on the way these nutrients are utilized. The purpose of this study was to evaluate S. ocellatus growth and lipase gene expression in response to increasing dietary lipid supplementation. Four experimental diets were formulated to provide 3, 10, 16, or 23% lipid using menhaden fish oil. Twenty juveniles (mean initial weight 2.3 ± 0.1 g) were stocked per aquaria in a recirculating system; each diet was assigned to three aquaria and fed to fish for 6 weeks. At the end of the study, fish fed 3% of dietary lipid were significantly (P < 0.0001) smaller and showed significantly lower feed efficiency, condition factor, hepatosomatic index, and intraperitoneal fat than fish fed the other diets, but no differences were observed among fish fed 10, 16, or 23% lipid. A straight broken-line regression model for thermal growth coefficient provided an estimated value of 9.4% of dietary lipid as the optimal inclusion level. The bile salt-dependent lipase (BSDL) of red drum was 80.3 kDa. Relative gene expression of BSDL was significantly higher (P = 0.0007) in fish fed 10% lipid, with no differences among the other dietary treatments. Results provided could help monitor the metabolic status of farmed fish and contribute to optimize diet formulations based on maximum gene expression of BSDL for supplementation of dietary lipid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Association of Official Analytical Chemists, AOAC (2005) Official methods of analysis. Association of Analytical Chemists, Arlington

    Google Scholar 

  • Bell JG, McEvoy LA, Estevez A, Shields RJ, Sargent JR (2003) Optimising lipid nutrition in first-feeding flatfish larvae. Aquaculture 227:211–220

    Article  CAS  Google Scholar 

  • Buchet V, Zambonino-Infante JL, Cahu CL (2000) Effect of lipid level in a compound diet on the development of red drum (Sciaenops ocellatus) larvae. Aquaculture 184:339–347

    Article  CAS  Google Scholar 

  • Buddington RK, Kuz’mina V (2000) Digestive system. In: Ostrander GK (ed) The laboratory fish. Academic Press, San Diego, pp 173–188

    Chapter  Google Scholar 

  • Cahu C, Zambonino-Infante J (2001) Substitution of live food by formulated diets in marine fish larvae. Aquaculture 200:161–180

    Article  Google Scholar 

  • Centre for Agriculture and Biosciences International, CABI (2017) Sciaenops ocellatus. http://www.cabi.org/isc/datasheet/64720. Accessed: June 16th 2017

  • Cho CY (1990) Fish nutrition, feeds and feeding: with special emphasis on salmonid aquaculture. Food Rev Int 6:333–357

    Article  CAS  Google Scholar 

  • Crenon I, Foglizzo E, Kerfelec B, Verine A, Pignol D, Hermoso J, Bonicel J, Chapus C (1998) Pancreatic lipase-related protein type I: a specialized lipase or an inactive enzyme. Protein Eng 11:135–142

    Article  PubMed  CAS  Google Scholar 

  • Darias MJ, Murray HM, Gallant JW, Douglas SE, Yúfera M, Martínez-Rodríguez G (2007) The spatiotemporal expression pattern of trypsinogen and bile salt-activated lipase during the larval development of red porgy (Pagrus pagrus, Pisces, Sparidae). Mar Biol 152:109–118

    Article  CAS  Google Scholar 

  • Douglas SE, Mandla S, Gallant JW (2000) Molecular analysis of the amylase gene and its expression during development in the winter flounder, Pleuronectes americanus. Aquaculture 190:247–260

    Article  CAS  Google Scholar 

  • Duan J, Wei G, Xu D, Liu K, Fang D, Xu P (2016) Δ6 fatty acid desaturase gene in estuarine tapertail anchovy (Coila nasus): structure characterization and mRNA expression under different dietary and fasting conditions. Pakistan J Zool 48:915–922

    CAS  Google Scholar 

  • Fisheries and Aquaculture Department, Food and Agriculture Organization, FAD-FAO (2017) Cultured Aquatic Species Information Programme: Sciaenops ocellatus (Linnaeus, 1766). http://www.fao.org/fishery/culturedspecies/Sciaenops_ocellatus/en#tcNA0126. Accessed: June 16th 2017

  • Folch J, Lees M, Sloane-Stanley CH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • García-Meilán I, Valentín JM, Fontanillas R, Gallardo MA (2013) Different protein to energy ratio diets for gilthead sea bream (Sparus aurata): effects on digestive and absorptive processes. Aquaculture 412–413:1–7

    Article  CAS  Google Scholar 

  • Gjellesvik DR, Lombardo D, Walther BT (1992) Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. Biochim Biophys Acta 1124:123–134

    Article  PubMed  CAS  Google Scholar 

  • Gjellesvik DR, Lorens JB, Male R (1994) Pancreatic carboxylester lipase from Atlantic Salmon (Salmo salar) cDNA sequence and computer-assisted modelling of tertiary structure. Eur J Biochem 226:603–612

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Requeni P, Bedolla-Cázares F, Montecchia C, Zorilla J, Villian M, Toledo-Cuevas EM, Canosa F (2013) Effects of increasing the dietary lipid levels on the growth performance, body composition and digestive enzyme activities of the teleost pejerrey (Odontesthes bonariensis). Aquaculture 416-417:15–22

    Article  CAS  Google Scholar 

  • González-Félix ML, Minjarez-Osorio C, Perez-Velazquez M, Urquidez-Bejarano P (2015) Influence of dietary lipid on growth performance and body composition of the Gulf corvina, Cynoscion othonopterus. Aquaculture 448:401–409

    Article  CAS  Google Scholar 

  • Görgün S, Akpinar MA (2012) Purification and characterization of lipase from the liver of carp, Cyprinus carpio L. (1758), living in Lake Tödürge (Sivas, Türkiye). Turk J Fish Aquat Sci 12:207–215

    Google Scholar 

  • Hoehne-Reitan K, Kjørsvik E, Reitan KI (2001a) Bile salt-dependent lipase in larval turbot, as influenced by density and lipid content of prey. J Fish Biol 58:746–754

    Article  CAS  Google Scholar 

  • Hoehne-Reitan K, Kjørsvik E, Gjellesvik DR (2001b) Development of bile salt-dependent lipase in larval turbot. J Fish Biol 58:737–745

    Article  CAS  Google Scholar 

  • Holmes RS, Cox LA (2012) Bioinformatics and evolution of vertebrate pancreatic lipase and related proteins and genes. J Data Min Genom Proteomics 3:1–10

    Google Scholar 

  • Huang H, Xue L, Shi J, Zhao Y (2017) Changes in activities and mRNA expression of lipoprotein lipase and fatty acid synthetase in large yellow croaker, Larimichthys crocea (Richardson) during fasting. Aquac Res 48:3493–3504

    Article  CAS  Google Scholar 

  • Iijima N, Tanaka S, Ota Y (1998) Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiol Biochem 18:59–69

    Article  CAS  Google Scholar 

  • Izquierdo MS, Henderson RJ (1998) The determination of lipase and phospholipase activities in gut contents of turbot (Scophthalmus maximus) by fluorescence-based assays. Fish Physiol Biochem 19:153–162

    Article  CAS  Google Scholar 

  • Izquierdo MS, Socorro J, Arantzamendi L, Hernández-Cruz CM (2000) Recent advances in lipid nutrition in fish larvae. Fish Physiol Biochem 22:97–107

    Article  CAS  Google Scholar 

  • Jakubowski H (2016) Biochemistry Online: an approach based on chemical logic. Ch. 6. Transport and kinetics. D. More complicated enzymes. https://employees.csbsju.edu/hjakubowski/classes/ch331/transkinetics/olcomplicatedenzyme.html. Last updated April 11th, 2016. Accessed July 20th 2017

  • Jiménez MT, Pastor E, Grau A, Alconchel JI, Sánchez R, Cárdenas S (2005) Review of sciaenid culture around the world, with a special focus on the meagre Argyrosomus regius (Asso, 1801). Bol Inst Esp Oceanogr 21:169–175

    Google Scholar 

  • Koven WM, Henderson RJ, Sargent JR (1994a) Lipid digestion in turbot (Scophthalmus maximus) I: lipid class and fatty acid composition of digesta from different segments of the digestive tract. Fish Physiol Biochem 13:69–79

    Article  PubMed  CAS  Google Scholar 

  • Koven WM, Henderson RJ, Sargent JR (1994b) Lipid digestion in turbot (Scophthalmus maximus) II: lipolysis in vitro of 14C-labelled triacylglycerol, cholesterol ester and phosphatidylcholine by digesta from different segments of the digestive tract. Fish Physiol Biochem 13:275–283

    Article  PubMed  CAS  Google Scholar 

  • Kurtovic I, Marshall SN, Zhao X, Simpson BK (2009) Lipases from mammals and fishes. Rev Fish Sci 17:18–40

    Article  CAS  Google Scholar 

  • Kurtovic I, Marshall SN, Zhao X, Simpson BK (2010) Purification and properties of digestive lipases from Chinook salmon (Oncorhynchus tshawytscha) and New Zealand hoki (Macruronus novaezelandiae). Fish Physiol Biochem 36:1041–1060

    Article  PubMed  CAS  Google Scholar 

  • Lazo JP, Mendoza R, Holt GJ, Aguilera C, Arnold CR (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265:194–205

    Article  CAS  Google Scholar 

  • Le Huerou LI, Lhoste EF, Wicker-Planquart C, Dakka N, Toullec R, Corring T, Guilloteau P, Puigserver A (1993) Molecular aspects of enzyme synthesis in the exocrine pancreas with emphasis on development and nutritional regulation. Proc Nutr Soc 52:301–313

    Article  Google Scholar 

  • Leger C (1985) Digestion, absorption and transport of lipids. In: Cowey CB, Mackie AM, Bell JG (eds) Nutrition and feeding of fish. Academic Press, London, pp 299–331

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lowe ME (1997) Structure and function of pancreatic lipase and colipase. Annu Rev Nutr 17:141–158

    Article  PubMed  CAS  Google Scholar 

  • Lowe ME (2002) The triglyceride lipases of the pancreas. J Lipid Res 43:2007–2016

    Article  PubMed  CAS  Google Scholar 

  • Monroig O, Webb K, Ibarra-Castro L, Holt GJ, Tocher DR (2011) Biosynthesis of long-chain polyunsaturated fatty acids in marine fish: characterization of an Elovl4-like elongase from cobia Rachycentron canadum and activation of the pathway during early life stages. Aquaculture 312:145–153

    Article  CAS  Google Scholar 

  • Morais S, Cahu C, Zambonino-Infante J, Robin J, Rønnestad I, Dinis M, Conceição L (2004) Dietary TAG source and level affect performance and lipase expression in larval sea bass (Dicentrarchus labrax). Lipids 39:449–458

    Article  PubMed  CAS  Google Scholar 

  • Morais S, Conceição LEC, Rønnestad I, Koven W, Cahu C, Zambonino-Infante JL, Dinis MT (2007) Dietary neutral lipid level and source in marine fish larvae: effects on digestive physiology and food intake. Aquaculture 268:106–122

    Article  CAS  Google Scholar 

  • Mukundan MK, Gopakumar K, Nair MR (1985) Purification of a lipase from the hepatopancreas of oil sardine (Sardinella longiceps Linnaeus) and its characteristics and properties. J Sci Food Agric 36:191–203

    Article  CAS  Google Scholar 

  • Murray HM, Gallant JW, Perez-Casanova JC, Johnson SC, Douglas SE (2003) Ontogeny of lipase expression in winter flounder. J Fish Biol 62:816–833

    Article  CAS  Google Scholar 

  • Nolasco H, Moyano-López F, Vega-Villasante F (2011) Partial characterization of pyloric-duodenal lipase of gilthead seabream (Sparus aurata). Fish Physiol Biochem 37:43–52

    Article  PubMed  CAS  Google Scholar 

  • Patton JS, Nevenzel JC, Benson AA (1975) Specificity of digestive lipases in hydrolysis of wax esters and triglycerides studied in anchovy and other selected fish. Lipids 10:575–583

    Article  PubMed  CAS  Google Scholar 

  • Patton JS, Haswell MS, Moon TW (1978) Aspects of lipid synthesis, hydrolysis, and transport studied in selected Amazon fish. Can J Zool 56:787–792

    Article  CAS  Google Scholar 

  • Peres A, Zambonino-Infante JL, Cahu C (1998) Dietary regulation of activities and mRNA levels of trypsin and amylase in sea bass (Dicentrachus labrax) larvae. Fish Physiol Biochem 19:145–152

    Article  CAS  Google Scholar 

  • Perez-Casanova JC, Murray HM, Gallant JW, Ross NW, Douglas SE, Johnson SC (2004) Bile salt-activated lipase expression during larval development in the haddock (Melanogrammus aeglefinus). Aquaculture 235:601–617

    Article  CAS  Google Scholar 

  • Ricker WE (1975) Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191, Ottawa, Canada:1–382

  • Rimoldi S, Benedito-Palos L, Terova G, Pérez-Sánchez J (2016) Wide-targeted gene expression infers tissue-specific molecular signatures of lipid metabolism in fed and fasted fish. Rev Fish Biol Fisheries 26:93–108

    Article  Google Scholar 

  • Rippe C, Berger K, Mei J, Lowe ME, Erlanson-Albertsson C (2003) Effect of long-term high-fat feeding on the expression of pancreatic lipases and adipose tissue uncoupling proteins in mice. Pancreas 26:e36–e42

    Article  PubMed Central  Google Scholar 

  • Robbins KR, Saxton AM, Southern LL (2006) Estimation of nutrient requirements using broken-line regression analysis. J Anim Sci 84(Suppl. E):E155–E165

    Article  PubMed  Google Scholar 

  • Rueda-López S, Martínez-Montaño E, Viana MT (2017) Biochemical characterization and comparison of pancreatic lipases from the Pacific bluefin tuna, Thunnus orientalis; totoaba, Totoaba macdonaldi; and striped bass, Morone saxatilis. J World Aquacult Soc 48:156–165

    Article  CAS  Google Scholar 

  • Sargent JR, Henderson RJ, Tocher DR (1989) The lipids. In: Halver JE (ed) Fish nutrition. Academic Press, New York, pp 153–218

    Google Scholar 

  • Serrano JA, Nematipour GR, Gatlin DM III (1992) Dietary protein requirement of red drum (Sciaenops ocellatus) and relative use of dietary carbohydrate and lipid. Aquaculture 101:283–291

    Article  CAS  Google Scholar 

  • Singh R, Gupta VK, Goswami VK (2006) A simple activity staining protocol for lipases and esterases. Appl Microbiol Biotechnol 70:679–682

    Article  PubMed  CAS  Google Scholar 

  • Tang R, Dodd A, Lai D, McNabb WC, Love DR (2007) Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin 39:384–390

    Article  PubMed  CAS  Google Scholar 

  • Terzyan S, Wang C-S, Downs D, Hunter B, Zhang X (2000) Crystal structure of the catalytic domain of human bile salt activated lipase. Protein Sci 9:1783–1790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thoman ES, Davis DA, Arnold CR (1999) Evaluation of growout diets with varying protein and energy levels for red drum (Sciaenops ocellatus). Aquaculture 176:343–353

    Article  CAS  Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  • Tocher DR, Sargent JR (1984) Studies on triacylglycerol, wax ester and sterol ester hydrolases in intestinal caeca of rainbow trout (Salmo gairdneri, L.) fed diets rich in triacylglycerols and wax esters. Comp Biochem Physiol 77:561–571

    Google Scholar 

  • Van Tilbeurgh H, Bezzine S, Cambillau C, Verger R, Carrière F (1999) Colipase: structure and interaction with pancreatic lipase. Biochim Biophys Acta 1441:173–184

    Article  PubMed  Google Scholar 

  • Watson CJ, Nordi WM, Esbaugh AJ (2014) Osmoregulation and branchial plasticity after acute freshwater transfer in red drum, Sciaenops ocellatus. Comp Biochem Physiol A 178:82–89

    Article  CAS  Google Scholar 

  • Williams CD, Robinson EH (1988) Response of red drum to various dietary levels of menhaden oil. Aquaculture 70:107–120

    Article  CAS  Google Scholar 

  • Wong H, Schotz MC (2002) The lipase gene family. J Lipid Res 43:993–999

    Article  PubMed  CAS  Google Scholar 

  • Zambonino-Infante JL, Cahu CL (1999) High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development. J Nutr 129:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Zambonino-Infante JL, Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Phys C 130:477–487

    CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by CONACYT (Consejo Nacional de Ciencia y Tecnologia), Mexico, for Drs. González-Félix (CONACYT Application 454912, Registry 312949) and Perez -Velazquez (CONACYT Application 454922, Registry 312944). The mention of trademarks or proprietary products does not constitute an endorsement of the product and does not imply its approval to the exclusion of other products that may also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayra L. González-Félix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Félix, M.L., Gatlin, D.M., Perez-Velazquez, M. et al. Red drum Sciaenops ocellatus growth and expression of bile salt-dependent lipase in response to increasing dietary lipid supplementation. Fish Physiol Biochem 44, 1319–1331 (2018). https://doi.org/10.1007/s10695-018-0523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-018-0523-z

Keywords

Navigation