Skip to main content
Log in

Partial characterization of pyloric-duodenal lipase of gilthead seabream (Sparus aurata)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In the present study, we report the isolation and characterization of seabream Sparus aurata pyloric caeca-duodenal lipase. Optimum activity was found at pH 8.5 and salinity of 50 mM NaCl. Lipase activity was sensitive to divalent ions, and extreme pH values (4, 5, and 12), being more stable at alkaline than acid pH. Optimum temperature was found at 50°C, but lipase was stable at temperatures below 40°C. Lipase has a bile salt sodium taurocholate requirement for increased activity. Gradient PAGE electrophoresis revealed the presence of four isoforms with apparent molecular masses of 34, 50, 68, and 84 KDa, respectively. Pyloric-duodenal lipase was able to hydrolyze emulsified alimentary oils. Results confirm the presence of true lipases in Sparus aurata digestive tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alam MS, Teshima S, Ishikawa M, Koshio S (2001) Effects of ursodeoxycholic acid on growth and digestive enzyme activities of Japanese flounder Paralichthys olivaceus (Temminck & Schlegel). Aquacult Res 32:235–243

    Article  CAS  Google Scholar 

  • Alarcón FJ, Díaz M, Moyano FJ, Abellán E (1998) Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol Biochem 19:257–267

    Article  Google Scholar 

  • Albalat A, Saera-Vila A, Capilla E, Gutiérrez J, Pérez-Sánchez J, Navarro I (2007) Insulin regulation of lipoprotein lipase (LPL) activity and expression in gilthead sea bream (Sparus aurata). Comp Biochem Physiol B 148:151–159

    Article  PubMed  CAS  Google Scholar 

  • Alvarez FJ, Stella VJ (1989) The role of calcium and bile salts on the pancreatic lipase-catalyzed hydrolysis of triglyceride emulsions stabilized with lecithin. Pharm Res 6:449–457

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-González CA, Moyano-López FJ, Civera-Cerecedo R, Carrasco-Chávez V, Ortíz-Galindo JL, Nolasco-Soria H, Tovar-Ramírez D, Dumas S (2008) Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus II: electrophoretic analysis. Fish Physiol Biochem 36(1):29–37. doi:10.1007/s10695-008-9276-4

    Article  PubMed  Google Scholar 

  • Borlongan IG (1990) Studies on the digestive lipases of milkfish, Chanos chanos. Aquaculture 89:315–325

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cahu CL, Zambonino-Infante JL, Corraze G, Coves D (2000) Dietary lipid level affects fatty acid composition and hydrolase activities of intestinal brush border membrane in seabass. Fish Physiol Biochem 23:165–172

    Article  CAS  Google Scholar 

  • Cara JB, Moyano FJ, Cárdenas S, Fernández-Díaz C, Yuferas M (2003) Assessment of digestive enzyme activities during larval development of white bream. J Fish Biol 63:48–58

    Article  CAS  Google Scholar 

  • Chatzifotis S, Polemitou I, Divanach P, Antonopoulou E (2008) Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet. Aquaculture 275:201–208

    Article  CAS  Google Scholar 

  • Debnath D, Pal AK, Sahu NP, Yengkokpam S, Baruah K, Choudhury D, Venkateshwarlu G (2007) Digestive enzymes and metabolic profile of Labeo rohita fingerlings fed diets with different crude protein levels. Comp Biochem Physiol B 146:107–114

    Article  PubMed  CAS  Google Scholar 

  • Degerli N, Akpinar MA (2002) Partial purification of intestinal triglyceride lipase from Cyprinion macrostomus Heckel, 1843 and effect of pH on enzyme activity. Turk J Biol 26:133–143

    CAS  Google Scholar 

  • Deguara S, Jauncey K, Agius C (2003) Enzyme activities and pH variations in the digestive tract of gilthead sea bream. J Fish Biol 62:1033–1043

    Article  CAS  Google Scholar 

  • Fernández I, Moyano FJ, Diaz M, Martínez T (2001) Characterization of α-amylase activity in five species of mediterranean sparid fishes (Sparidae, Teleostei). J Exp Mar Biol Ecol 262:1–12

    Article  Google Scholar 

  • Fredrikson G, Straifors P, Nilsson NO, Belfrage P (1981) Hormone-sensitive lipase of rat adipose tissue and some properties. J Biol Chem 256:6311–6320

    PubMed  CAS  Google Scholar 

  • Gjellesvik DR, Raae AJ, Walther BT (1989) Partial purification and characterization of a triglyceride lipase from Cod (Gadus morhua). Aquaculture 79:177–184

    Article  CAS  Google Scholar 

  • Hansen JO, Berge GM, Hillestad M, Krogdahl Å, Galloway TF, Holm H, Holm J, Ruyter B (2008) Apparent digestion and apparent retention of lipid and fatty acids in Atlantic cod (Gadus morhua) fed increasing dietary lipid levels. Aquaculture 284:159–166

    Article  CAS  Google Scholar 

  • Iijima N, Chosa S, Uematsu K, Goto T, Hoshita T, Kayama M (1997) Purification and characterization of phospholipase A2 from the pyloric caeca of red sea bream, Pagrus major. Fish Physiol Biochem 16:487–498

    Article  CAS  Google Scholar 

  • Iijima N, Tanaka S, Ota Y (1998) Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiol Biochem 18:59–69

    Article  CAS  Google Scholar 

  • Islam MA, Absar N, Bhuiyan AS (2008) Isolation, purification and characterization of lipase from grey mullet (Liza parsia Hamilton, 1822). Asian J Biochem 3:243–255

    Article  CAS  Google Scholar 

  • Izquierdo MS, Henderson RJ (1998) The determination of lipase and phospholipase activities in gut contents of turbot (Scophthalmus maximus) by fluorescence-based assays. Fish Physiol Biochem 19:153–162

    Article  CAS  Google Scholar 

  • Jun-Sheng L, Jian-Lin L, Ting-Ting W (2006) Ontogeny of protease, amylase and lipase in the alimentary tract of hybrid juvenile tilapia (Oreochromis niloticus × Oreochromis aureus). Fish Physiol Biochem 32:295–303

    Article  Google Scholar 

  • Khan IM, Chandan RC, Shahani KM (1975) Bovine pancreatic lipase, II. stability and effect of activators and inhibitors. J Dairy Sci 59:840–846

    Article  Google Scholar 

  • Klomklao S, Benjakul S, Wisessanguan W, Kishimura H, Simpson BK, Saeki H (2006) Trypsins from yellowfin tuna (Thunnus albacores) spleen: purification and characterization. Comp Biochem Physiol 144B:47–56

    CAS  Google Scholar 

  • Koven WM, Henderson RJ, Sargent JR (1997) Lipid digestion in turbot (Scophthalmus maximus): in vivo and in vitro studies of the lipolytic activity in various segments of the digestive tract. Aquaculture 151:155–171

    Article  CAS  Google Scholar 

  • Kurtovic I, Marshall SN, Zhao X, Simpson BK (2009) Lipases from mammals and fishes. Rev Fish Sci 17(1):18–40

    Article  CAS  Google Scholar 

  • Kurtovic I, Marshall SN, Zhao X, Simpson BK. (2010) Purification and properties of digestive lipases from Chinook salmon (Oncorhynchus tshawytscha) and New Zealand hoki (Macruronus novaezelandiae). Fish Physiol Biochem. doi: 10.1007/s10695-010-9382-y

  • Kuzmina VV, Ushakova NV (2007) Effects of temperature, pH, and heavy metals (Copper, Zinc) upon proteinase activities in digestive tract mucosa of typical and facultative piscivorous fish. J Ichthyol 47:473–480

    Article  Google Scholar 

  • Lundstedt LM, Bibiano-Melo JF, Moraes G (2004) Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei: Siluriformes) in response to diet composition. Comp Biochem Physiol B 137:331–339

    Article  PubMed  CAS  Google Scholar 

  • Matus de la Parra A, Rosas A, Lazo JP, Viana MT (2007) Partial characterization of the digestive enzymes of Pacific bluefin tuna Thunnus orientalis under culture conditions. Fish Physiol Biochem 33:223–231

    Article  Google Scholar 

  • Metin K, Akpinar MA (2000) Some kinetic properties of hepatic lipase of Oncorhynchus mykiss Walbaum, 1792. Turk J Biol 24:489–502

    CAS  Google Scholar 

  • Moyano FJ, Savoie L (2001) Comparison of in vitro systems of protein digestion using either mammal or fish proteolytic enzymes. Comp Biochem Physiol A 128:359–368

    Article  CAS  Google Scholar 

  • Moyano FJ, Alarcón FJ, Díaz M (1998) Comparative biochemistry of fish digestive proteases applied to the development of in vitro digestibility assays. Trends Comp Biochem Physiol 5:135–143

    CAS  Google Scholar 

  • Mukundan EK, Gopakumar K, Nair MR (1985) Purification of a lipase from the hepatopancreas of oil sardine (Sardinella longiceps Linnaeus) and its characteristics and properties. J Sci Food Agric 36:191–203

    Article  CAS  Google Scholar 

  • Munilla-Moran R, Saborido-Rey F (1996a) Digestive enzymes in marine species, I. Proteinase activities in gut from redfish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus). Comp Biochem Physiol B 113:395–402

    Article  Google Scholar 

  • Munilla-Moran R, Saborido-Rey F (1996b) Digestive enzymes in marine species. II. Amylase activities in gut from seabream (Sparus aurata), turbot (Scophthalmus maximus) and redfish (Sebastes mentella). Comp Biochem Physiol B 113:827–834

    Article  Google Scholar 

  • Murray HM, Gallant JW, Perez-Casanova JC, Johnson SC, Douglas SE (2003) Ontogeny of lipase expression in winter flounder. J Fish Biol 62:816–833

    Article  CAS  Google Scholar 

  • Nolasco H (2008) Métodos Utilizados por el Centro de Investigaciones Biológicas del Noroeste (CIBNOR) para la Medición de Digestibilidad in vitro para Camarón. In: Cruz-Suárez LE, Villarreal-Colmenares H, Tapia-Salazar M, Nieto-López MG, Villarreal-Cavazos DA, Ricque Marie D (eds) Manual de Metodologías de Digestibilidad in vivo e in vitro para Ingredientes y Dietas para Camarón. Universidad Autónoma de Nuevo León, Monterrey, pp 215–225

    Google Scholar 

  • Perez-Casanova JC, Murray HM, Gallant JW, Ross NW, Douglas SE, Johnson SC (2004) Bile salt-activated lipase expression during larval development in the haddock (Melanogrammus aeglefinus). Aquaculture 235:601–617

    Article  CAS  Google Scholar 

  • Raso BA, Hultin HO (1988) A comparison of dogfish and porcine pancreatic lipase. Comp Biochem Physiol 89B:671–677

    Google Scholar 

  • Samuelsen T, Isaksen M, McLean E (2001) Influence of dietary recombinant microbial lipase on performance and quality characteristics of rainbow trout, Oncorhynchus mykiss. Aquaculture 194:161–171

    Article  CAS  Google Scholar 

  • Stauffer CE (1989) Enzyme assays for food scientists. Van Nostrand-Reinhold, New York, pp 79–85

    Google Scholar 

  • Taniguchi A, Takano K, Kamoi I (2001) Purification and properties of lipase from Tilapia intestine—digestive enzyme of Tilapia—VI. Nippon Suisan Gakkai Shi 67:78–84

    CAS  Google Scholar 

  • Tocher DR, Sargent JR (1984) Studies on triacylglycerol, wax ester and sterolester hydrolases in intestinal caeca of rainbow trout (Salmo gairdneri) fed diets rich in triacylglycerol and wax esters. Comp Biochem Physiol B 77:561–571

    Article  Google Scholar 

  • Uchiyama S, Fujikawa S, Uematsu K, Matsuda H, Aida S, Iijima N (2002) Localization of group IB phospholipase A2 isoform in the gills of the red sea bream, Pagrus (Chrysophrys) major. Comp Biochem Physiol B 132:671–683

    Article  PubMed  CAS  Google Scholar 

  • Une M, Goto T, Kihira K, Kuramoto T, Hagiwara K, Nakajima T (1991) Isolation and identification of bile salts conjugated with cysteinolic acid from bile of the red seabream, Pagrosomus major. J Lipid Res 32:1619–1623

    PubMed  CAS  Google Scholar 

  • Venou B, Alexis MN, Founttoulaki E, Haralabous J (2009) Performance factors, body composition and digestion characteristics of gilthead sea bream (Sparus aurata) fed pelleted or extruded diets. Aquac Nutr 15(4):390–401

    Article  CAS  Google Scholar 

  • Versaw WK, Cuppett SL, Winters DD, Williams LE (1989) An improved colorimetric assay for bacterial lipase in nonfat dry milk. J Food Sci 54:1557–1558

    Article  CAS  Google Scholar 

  • Xiong DM, Xie CX, Zhang HJ, Liu HP (2010) Digestive enzymes along digestive tract of a carnivorous fish Glyptosternum maculatum (Sisoridae, Siluriformes). J Anim Physiol Anim Nutr (Berl). doi:10.1111/j.1439-0396.2009.00984.x. http://www3.interscience.wiley.com/doiinfo.html

  • Zhang L, Lookene A, Wu G, Olivecrona G (2005) Calcium triggers folding of lipoprotein lipase into active dimmers. J Biol Chem 280:42580–42591

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance of Antonia Barros, Mariam Hamdam, and Patricia Hinojosa is acknowledged. HN thanks the Government of Mexico, through CONACYT by for grant 000000000081074, and for financial of the CONACYT research project No. 0000000000084652 related to lipid digestibility, and to Universidad de Almeria for acceptance for research stay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Nolasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolasco, H., Moyano-López, F. & Vega-Villasante, F. Partial characterization of pyloric-duodenal lipase of gilthead seabream (Sparus aurata). Fish Physiol Biochem 37, 43–52 (2011). https://doi.org/10.1007/s10695-010-9414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-010-9414-7

Keywords

Navigation