Skip to main content
Log in

Metabolic adaptations of oxidative muscle during spawning migration in the Atlantic salmon Salmo salar L.

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The adaptability/plasticity of the highly oxidative red muscle in Atlantic salmon was demonstrated during spawning migration. Substrate concentrations and the enzymatic pathways of ATP production were examined in red muscle obtained from Atlantic salmon at different sites along their migratory route in the Exploits River, Newfoundland, Canada. Individuals were chronologically sampled from a seawater site, two sites upstream, and at spawning. The 20% decrease in salmon body weight during the later stages of migration was accompanied by large decreases (mg dry weight−1) in both glycogen (P < 0.01) and total muscle lipid (P < 0.01). In contrast, water content and protein concentration (mg dry weight−1) of the red muscle increased by 25 and 34%, respectively, at spawning. Enzymes of the glycolytic pathways demonstrated a significant (P < 0.001) decrease in maximal activity as migration proceeded whereas enzymes of the oxidative phosphorylation pathways, specifically the citric acid cycle enzymes, exhibited an increase (P < 0.001) in maximal activity at spawning. The antioxidant enzyme superoxide dismutase also demonstrated an increase (P < 0.001) in maximal activity during the latter stages of migration. These adaptations imply that the red epaxial muscle of Atlantic salmon has a more efficient means of oxidizing lipids, while minimizing free radical damage, during the later stages of migration and spawning, thereby potentially increasing post spawning survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Butler DG (1969) Hormonal control of gluconeogenesis in the North American eel (Anguilla rostrata). Gen Comp Endocrinol 10:85–91. doi:10.1016/0016-6480(68)90012-9

    Article  Google Scholar 

  • Chi MM, Hintz CS, Coyle EF, Martin WH 3rd, Ivy JL, Nemeth PM, Holloszy JO, Lowry OH (1983) Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. Am J Physiol 244(13):C276–C287

    Article  CAS  PubMed  Google Scholar 

  • Drodge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  Google Scholar 

  • Duscha BD, Kraus WE, Keteyian SJ, Sullivan MJ, Green HJ, Schachat FH, Pippen AM, Brawner CA, Blank JM, Annex BH (1999) Capillary density of skeletal muscle A contributing mechanism for exercise intolerance in Class II-III chronic heart failure independent of other peripheral alterations. J Am Coll Cardiol 33:1956–1963. doi:10.1016/S0735-1097(99)00101-1

    Article  CAS  PubMed  Google Scholar 

  • Flohe L, Becker R, Brigelius R, Lengfelder E, Otting F (1989) Convenient assays for superoxide dismutase. In: Miquel J, Quintanilha A, Weber H (eds) Handbook of free radicals and antioxidants in biomedicine, vol III. CRC, Boca Raton, FL, pp 287–293

    Google Scholar 

  • Geist RD, Abernethy CS, Blanton SL (2000) The use of electromyogram telemetry to estimate energy expenditure of adult fall Chinook salmon. Trans Am Fish Soc 129:126–135. doi:10.1577/1548-8659(2000)129&lt;0126:TUOETT&gt;2.0.CO;2

    Article  Google Scholar 

  • Gollnick PD, Saltin B (1982) Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol 2:1–12. doi:10.1111/j.1475-097X.1982.tb00001.x

    Article  CAS  PubMed  Google Scholar 

  • Green H, Morrissey H, Smith D, Fraser I (1985) Relationships between microphotometric determinations of succinic dehydrogenase activity in single fibers using kinetics and end point criteria. Med Sci Sports Exerc 17(2):193. doi:10.1249/00005768-198504000-00056

    Article  Google Scholar 

  • Green H, Grant S, Bombardier E, Ranney D (1999) Initial aerobic power does not alter muscle metabolic adaptations to short-term training. Am J Physiol 277:E39–E48

    CAS  PubMed  Google Scholar 

  • Green HJ, Tupling R, Roy B, O’Toole D, Burnett M, Grant S (2000) Adaptations in skeletal muscle exercise metabolism to a sustained session of heavy intermittent exercise. Am J Physiol Endocrinol Metab 278:E118–E126

    Article  CAS  PubMed  Google Scholar 

  • Green HJ, Bombardier EB, Duhamel TA, Holloway GP, Tupling AR, Ouyang J (2008) Acute responses in muscle mitochondrial and cytosolic enzyme activities during heavy intermittent exercise. J Appl Physiol 104:931–937. doi:10.1152/japplphysiol.01151.2007

    Article  CAS  PubMed  Google Scholar 

  • Guderley H, Blier P, Richard L (1986) Metabolic changes during the reproductive migration of two sympatric coregonines, Coregonus artedii and Coregonus clupeaformis. Can J Fish Aquat Sci 43:1859–1865

    Article  CAS  Google Scholar 

  • Hazel JR, Prosser CL (1974) Molecular mechanisms of temperature compensation in poikilotherms. Physiol Rev 54:620–677

    Article  CAS  PubMed  Google Scholar 

  • Hendry AP, Beall E (2004) Energy use in spawning Atlantic salmon. Ecol Freshwat Fish 13:185–196. doi:10.1111/j.1600-0633.2004.00045.x

    Article  Google Scholar 

  • Henriksson J, Chi MM-Y, Hintz CS, Young DA, Kaiser KK, Salmons S, Lowry OH (1986) Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am J Physiol 251:C614–C632

    Article  CAS  PubMed  Google Scholar 

  • Hood DA, Chabi B, Menzies K, O’Leary M, Walkinshow D (2007) Exercise-induced mitochondrial biogenesis in skeletal muscle. In: Stocchi V, DeFeo P, Hood DA (eds) Role of physical exercise in preventing disease and improving quality of life. Springer Milan, Toronto, pp 37–60

    Chapter  Google Scholar 

  • Idler DR, Bitners I (1958) Biochemical studies on sockeye salmon during spawning migration. II. Cholesterol, fat, protein, and water in the flesh of standard fish. Can J Biochem Physiol 36:793–798

    Article  CAS  PubMed  Google Scholar 

  • Idler DR, Clemens WA (1959) The energy expenditures of Fraser River sockeye salmon during spawning migration to Chilko and Stuart Lakes. Int Pac Salmon Fish Comm Prog Rep 6:1–80

    Google Scholar 

  • Ince BW, Thorpe A (1976) The effects of starvation and force-feeding on the metabolism of the northern pike, Esox lucius L. J Fish Biol 8:79–88. doi:10.1111/j.1095-8649.1976.tb03909.x

    Article  CAS  Google Scholar 

  • Jansenns BJ, Childress JJ, Baguet F, Rees JF (2000) Reduced enzymatic antioxidative defense in deep-sea fish. J Exp Biol 203:3717–3725

    Google Scholar 

  • Jayne BC, Lauder GV (1994) How swimming fish use slow and fast muscle fibers: implications for models of vertebrate muscle recruitment. J Comp Physiol A 175:123–131. doi:10.1007/BF00217443

    Article  CAS  PubMed  Google Scholar 

  • Johnston IA, Moon TW (1980) Exercise training in skeletal muscle of brook trout (Salvelinus fontinalis). J Exp Biol 87:177–194

    CAS  PubMed  Google Scholar 

  • Jones PL, Sidell BD (1982) Metabolic responses of striped bass (Morone saxatilis) to temperature acclimation. II. Alterations in metabolic carbon sources and distributions of fiber types in locomotory muscle. J Exp Zool 219:163–171. doi:10.1002/jez.1402190205

    Article  CAS  Google Scholar 

  • Jonsson B, Jonsson N (2003) Energy allocation among developmental stages, age groups, and types of Atlantic salmon (Salmo salar) spawners. Can J Fish Aquat Sci 60:506–615. doi:10.1139/f03-042

    Article  Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (1997) Changes in proximate composition and estimates of energetic costs during upstream migration and spawning in Atlantic salmon. J Anim Ecol 66:425–436. doi:10.2307/5987

    Article  Google Scholar 

  • Leonard JB, McCormick SD (1999) Effects of migration distance on whole-body and tissue-specific energy use in American shad (Alosa sapidissia). Can J Fish Aquat Sci 56:1159–1171. doi:10.1139/cjfas-56-7-1159

    Article  Google Scholar 

  • Lopez-LLuch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis efficiency. Proc Natl Acad Sci USA 103:1768–1773. doi:10.1073/pnas.0510452103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love RM (1980) The chemistry of Fishes, vol 2. Academic Press, New York, pp. 70–109 and 166–226

  • Lyle AA, Elliott JM (1998) Migratory salmonids as vectors of carbon, nitrogen and phosphorus between marine and freshwater environments in north-east England. Sci Total Environ 210/211:457–468. doi:10.1016/S0048-9697(98)00031-X

    Article  CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. doi:10.1111/j.1432-1033.1974.tb03714.x

    Article  CAS  PubMed  Google Scholar 

  • Martin NB, Houlihan DF, Talbot C, Palmer RM (1993) Protein metabolism during sexual maturation of female Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 12:131–141. doi:10.1007/BF00004378

    Article  CAS  PubMed  Google Scholar 

  • Mommsen TP, French CJ, Hochachka PW (1980) Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can J Zool 58:1785–1799

    Article  CAS  Google Scholar 

  • Passonneau JV, Lowry OH (1993) Enzymatic analysis: a practical guide. Humana Press, New Jersey, pp 111–305

    Google Scholar 

  • Patterson S, Johnston IA, Goldspink G (1974) The effects of starvation on the chemical composition of red and white muscles in the plaice (Pleuronectes platessa). Experientia 30:892–894. doi:10.1007/BF01938344

    Article  CAS  PubMed  Google Scholar 

  • Polachek I, Cabib E (1981) A simple procedure for protein determination by the Lowry method in dilute solution and in the presence of interfering substances. Anal Biochem 117:311–314. doi:10.1016/0003-2697(81)90784-3

    Article  Google Scholar 

  • Rodnick KJ, Sidell BD (1994) Cold acclimation increases carnitine palmitoyltransferase I activity in oxidative muscle of striped bass. Am J Physiol 266(35):R405–R412

    CAS  PubMed  Google Scholar 

  • Wallimann T (1994) Bioenergetics: dissecting the role of creatine kinase. Curr Biol 4:42–46. doi:10.1016/S0960-9822(00)00008-7

    Article  CAS  PubMed  Google Scholar 

  • Wood JD, Duncan DW, Jackson M (1960) Biochemical studies on sockeye salmon during spawning migration. XI. The free histidine content of the tissue. J Fish Res Board Can 17:347–351

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Sciences and Engineering Research Council (NSERC) grant to RSM and HJG. The authors would also like to acknowledge the support and help of the Department of Fisheries and Oceans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bombardier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bombardier, E., Booth, R.K., Green, H.J. et al. Metabolic adaptations of oxidative muscle during spawning migration in the Atlantic salmon Salmo salar L.. Fish Physiol Biochem 36, 355–365 (2010). https://doi.org/10.1007/s10695-008-9300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-008-9300-8

Keywords

Navigation