Skip to main content

Advertisement

Log in

Energetic, antioxidant, inflammatory and cell death responses in the red muscle of thermally stressed Sparus aurata

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

For a comprehensive understanding of fish responses to increasing thermal stress in marine environments, we investigated tissue energetics, antioxidant levels, inflammatory and cell death responses in Sparus aurata (gilthead seabream) red muscle during exposure to elevated temperatures (24 °C, 26 °C, 30 °C) compared to the control temperature of 18 °C. Energetic aspects were assessed by determining lactate, glucose and lipids levels in blood plasma, ATP, ADP and AMP levels, and AMPK phosphorylation as an indicator of regulatory changes in energy metabolism, in tissue extracts. Oxidative defence was assessed by determining superoxide dismutase, catalase and glutathione reductase maximum activities. Moreover, xanthine levels were determined as an indicator of purine conversion to xanthine and associated ROS production. In the context of inflammatory response and cell death due to oxidative stress, pro-inflammatory cytokines (IkBα phosphorylation, IL-6 and TNFα) levels, and LC3 II/I ratio and SQSTM1/p62 as indicators of autophagic-lysosomal pathway were also determined. A recovery in the efficacy of ATP production after a marked decrease during the 1st day of exposure to 24 °C is observed. This biphasic pattern is paralleled by antioxidant enzymes’ activities and inflammatory and autophagy responses, indicating a close correlation between ATP turnover and stress responses, which may benefit tissue function and survival. However, exposure beyond 24 °C caused tissue’s antioxidant capacity loss, triggering the inflammatory and cell death response, leading to increased fish mortality. The results of the present study set the thermal limits of the gilthead seabream at 22–24 °C and establish the used cellular and metabolic indicators as tools for the definition of the extreme thermal limits in marine organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A 138:405–415

    Google Scholar 

  • Abele D, Heise K, Pörtner HO, Puntarulo S (2002) Temperature dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205:1831–1841

    CAS  PubMed  Google Scholar 

  • Adam H (1963) Methods of enzymatic analysis. Academic Press, HU Bergmeyer, New York

    Google Scholar 

  • Barsotti C, Ipata PL (2004) Metabolic regulation of ATP breakdown and of adenosine production in rat brain extracts. Int J Biochem Cell Biol 36:2214–2225

    CAS  PubMed  Google Scholar 

  • Bauchot M-L, Hureau J-C (1990) Sparidae. In: Quero JC, Hureau JC, Karrer C, Post A, Saldanha L (eds) Check-list of the fishes of the eastern tropical Atlantic (CLOFETA), vol 2. JNICT, SEI, UNESCO, Paris, pp 790–812

    Google Scholar 

  • Baudry N, Laemmel E, Vicaut E (2008) In vivo reactive oxygen species production induced by ischemia in muscle arterioles of mice: involvement of xanthine oxidase and mitochondria. Am J Physiol Heart Circ Physiol 294:H821–H828

    CAS  PubMed  Google Scholar 

  • Becker LB, vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT (1999) Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol Heart Circ Physiol 277:H2240–H2246

    CAS  Google Scholar 

  • Bennett WA, Judd FW (1992) Comparison of methods for determining low temperature tolerance: experiments with pinfish, Lagodon rhomboids. Copeia 4:1059–1065

    Google Scholar 

  • Bennett W, Currier RJ, Beitinger TL (1997) Cold tolerance and potential overwinter of red-bellied piranha, Pygocentrus nattereri, in the United States. Trans Am Fish Soc 126(5):841–849

    Google Scholar 

  • Bethoux JP, Gentili B, Raunet J, Tailliez D (1990) Warming trend in the western Mediterranean deep water. Nature 347:660–662

    Google Scholar 

  • Boueiz A, Damarla M, Hassoun PM (2008) Xanthine oxidoreductase in respiratory and cardiovascular disorders. Am J Physiol Lung Cell Mol Physiol 294:L830–L840

    CAS  PubMed  Google Scholar 

  • Bowden TJ, Thompson KD, Morgan AL, Gratacap RML, Nikoskelainen S (2007) Seasonal variation and the immune response: a fish perspective. Fish Shellfish Immunol 22:695–706

    PubMed  Google Scholar 

  • Burton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42(3):517–525

    Google Scholar 

  • Calvo N, Marsh DR (2011) The combined effects of ENSO and the 11 year solar cycle on the Northern Hemisphere polar stratosphere. J Geophys Res 16:15226

    Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase assay. Methods Enzymol 113:484–495

    CAS  PubMed  Google Scholar 

  • Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29:323–333

    CAS  PubMed  Google Scholar 

  • Christen F, Desrosiers V, Dupont-Cyr BA, Vandenberg GW, Le François NR, Tardif J-C, Dufresne F, Lamarre SG, Blier PU (2018) Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production. Free Radic Biol Med 116:11–18

    CAS  PubMed  Google Scholar 

  • Chung DJ, Schulte PM (2015) Mechanisms and costs of mitochondrial thermal acclimation in a eurythermal killifish (Fundulus heteroclitus). J Exp Biol 218:1621–1631

    PubMed  Google Scholar 

  • Cohen G, Dembiec D, Marcus J (1970) Measurement of catalase activity in tissue extracts. Anal Biochem 34(1):30–38

    CAS  PubMed  Google Scholar 

  • Davies KJA (1987) Protein damage and degradation by oxygen radicals I. Gen Asp Biol Chem 262:9895–9901

    CAS  Google Scholar 

  • Dodson M, Darley-Usmar V, Zhang J (2013) Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 63:207–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farthing DE, Farthing CA, Xi L (2015) Inosine and hypoxanthine as novel biomarkers for cardiac ischemia: from bench to point-of-care. Exp Biol Med 240:821–831

    CAS  Google Scholar 

  • Feidantsis K, Pörtner HO, Lazou A, Michaelidis B (2009) Metabolic and molecular stress responses of the gilthead seabream Sparus aurata during long-term exposure to increasing temperatures. Mar Biol 156:797–809

    CAS  Google Scholar 

  • Feidantsis K, Antonopoulou E, Lazou A, Pörtner HO, Michaelidis B (2013) Seasonal variations of cellular stress response of the gilthead sea bream (Sparus aurata). J Comp Physiol B 183:625–639

    CAS  PubMed  Google Scholar 

  • Feidantsis K, Pörtner HO, Antonopoulou E, Michaelidis B (2015) Synergistic effects of acute warming and low pH on cellular stress responses of the gilthead seabream Sparus aurata. J Comp Physiol B 185:185–205

    CAS  PubMed  Google Scholar 

  • Feidantsis K, Pörtner HO, Vlachonikola E, Antonopoulou E, Michaelidis B (2018) Seasonal changes in metabolism and cellular stress phenomena in the gilthead sea bream (Sparus aurata). Physiol Biochem Zool 91(3):878–895

    PubMed  Google Scholar 

  • Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK (2018) Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 122:877–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11

    CAS  PubMed  Google Scholar 

  • Gambaiani DD, Mayol P, Isaac SJ, Simmonds MP (2009) Potential impacts of climate change and greenhouse gas emissions on Mediterranean marine ecosystems and cetaceans. J Mar Biol Assoc 89(1):179–201

    CAS  Google Scholar 

  • Garcia-Castillo J, Pelegrin P, Mulero V, Meseguer J (2002) Molecular cloning and expression analysis of tumor necrosis factor α from a marine fish reveal its constitutive expression and ubiquitous nature. Immunogenetics 54:200–207

    CAS  PubMed  Google Scholar 

  • Hakim J (1993) Reactive oxygen species and inflammation. C R Seances Soc Biol Fil 187(3):286–295

    CAS  PubMed  Google Scholar 

  • Hardewig I, Peck LS, Pörtner HO (1999) Thermal sensitivity of mitochondrial function in the Antarctic Notothenioid Lepidonotothen nudifrons. J Comp Physiol B 169:597–604

    Google Scholar 

  • Hardie DG (2004) The AMP-activated protein kinase pathway–new players upstream and downstream. J Cell Sci 117(23):5479–5487

    CAS  PubMed  Google Scholar 

  • Hardie G, Sakamoto K (2006) AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 21:48–60

    CAS  PubMed  Google Scholar 

  • Hardie G, Schaffer B, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201

    CAS  PubMed  Google Scholar 

  • Heise K, Puntarulo S, Nikinmaa M, Abele D, Pörtner HO (2006) Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout (Zoarces viviparus). J Exp Biol 209:353–363

    CAS  PubMed  Google Scholar 

  • Iftikar FI, Hickey AJR (2013) Do mitochondria limit hot fish hearts? Understanding the role of mitochondrial function with heat stress in Notolabrus celidotus. PLoS One 8:e64120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iftikar FI, Morash AJ, Cook DG, Herbert NA, Hickey AJR (2015) Temperature acclimation of mitochondria function from the hearts of a temperate wrasse (Notolabrus celidotus). Comp Biochem Physiol A Mol Integr Physiol 184:46–55

    CAS  PubMed  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309

    CAS  PubMed  Google Scholar 

  • Iwama GK (1999) Stress in fish. Stress of life: from molecules to man. Ann NY Acad Sci 851:304–310

    Google Scholar 

  • Jayasundara N, Somero GN (2013) Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker Gillichthys mirabilis. J Exp Biol 216(11):2111–2121

    PubMed  Google Scholar 

  • Jayasundara N, Gardner LD, Block BA (2013) Effects of temperature acclimation on Pacific bluefin tuna (Thunnus orientalis) cardiac transcriptome. Am J Physiol Regul Integr Comp Physiol 305:R1010–R1020

    CAS  PubMed  Google Scholar 

  • Jayasundara N, Tomanek L, Dowd WW, Somero GN (2015) Proteomic analysis of cardiac response to thermal acclimation in the eurythermal goby fish Gillichthys mirabilis. J Exp Biol 218:1359–1372

    PubMed  Google Scholar 

  • Jeffries KM, Hinch SG, Sierocinski T, Pavlidis P, Miller KM (2014) Transcriptomic responses to high water temperature in two species of Pacific salmon. Evol Appl 7:286–300

    CAS  PubMed  Google Scholar 

  • Jeffries KM, Connon RE, Davis BE, Komoroske LM, Britton MT, Sommer T, Todgham AE, Fangue NA (2016) Effects of high temperatures on threatened estuarine fishes during periods of extreme drought. J Exp Biol 219:1705–1716

    PubMed  Google Scholar 

  • Khan JR, Iftikar FI, Herbert NA, Gnaiger E, Hickey AJR (2014) Thermal plasticity of skeletal muscle mitochondrial activity and whole animal respiration in a common intertidal triplefin fish, Forsterygion lapillum (Family: Tripterygiidae). J Comp Physiol B 184:991–1001

    CAS  PubMed  Google Scholar 

  • Kraffe E, Marty Y, Guderley H (2007) Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions. J Exp Biol 210:149–165

    CAS  PubMed  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress response and acquired thermotolerance. J Appl Physiol 92:2177–2186

    CAS  PubMed  Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    PubMed  Google Scholar 

  • Laing KJ, Wang T, Zou J, Holland J, Hong S, Bols N, Hirono I, Aoki T, Secombes CJ (2001) Cloning and expression analysis of rainbow trout Oncorhynchus mykiss tumor nekrosis factor-α. Eur J Biochem 268:1315–1322

    CAS  PubMed  Google Scholar 

  • Lamprecht W, Trautschold I (1963) Methods of enzymatic analysis. Academic Press, HU Bergmeyer, New York

    Google Scholar 

  • Lewis JM, Hori TS, Rise ML, Walsh PJ, Currie S (2010) Transcriptome responses to heat stress in the nucleated red blood cells of the rainbow trout (Oncorhynchus mykiss). Physiol Genom 42:361–373

    CAS  Google Scholar 

  • Li AJ, Leung PTY, Bao VWW, Lui GCS, Leung KMY (2014) Temperature-dependent physiological and biochemical responses of the marine medaka Oryzias melastigma with consideration of both low and high thermal extremes. J Therm Biol 36:116–123

    Google Scholar 

  • Logan CA, Somero GN (2010) Transcriptional responses to thermal acclimationin the eurythermal fish Gillichthys mirabilis (Cooper 1864). Am J Physiol Regul Integr Comp Physiol 299:R843–R852

    CAS  PubMed  Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    CAS  PubMed  Google Scholar 

  • Madeira DL, Narciso HN, Cabral C, Vinagre MS (2013) Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comp Biochem Physiol A 166:237–243

    CAS  Google Scholar 

  • Madeira D, Vinagre C, Costa PM, Diniz MS (2014) Histopathological alterations, physiological limits, and molecular changes of juvenile Sparus aurata in response to thermal stress. Mar Ecol Prog Ser 505:253–266

    Google Scholar 

  • Madeira D, Vinagre C, Diniz MS (2016) Are fish in hot water? Effects of warming on oxidative stress metabolism in the commercial species Sparus aurata. Ecol Indic 63:324–331

    CAS  Google Scholar 

  • McEwen BS, Wingfield JC (2003) Response to commentaries on the concept of allostasis. Horm Behav 43(1):28–30

    Google Scholar 

  • Nicholls RJ, Hoozemans FMJ (1996) The Mediterranean: vulnerability to coastal implication of climate change. Ocean Coast Manag 31(2–3):105–132

    Google Scholar 

  • Paoletti F, Mocali A (1990) Determination of Superoxide dismutase activity by purely chemical system based on NAD(P)H oxidation. Methods Enzymol 186:209–220

    CAS  PubMed  Google Scholar 

  • Pörtner HO (2001) Climate change and temperature dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146

    PubMed  Google Scholar 

  • Pörtner HO (2002a) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    Google Scholar 

  • Pörtner HO (2002b) Physiological basis of temperature-dependent biogeography: trade-offs in muscle design and performance in polar ectotherms. J Exp Biol 205:2217–2230

    PubMed  Google Scholar 

  • Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213(6):881–893

    PubMed  Google Scholar 

  • Pörtner HO (2012) Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. MEPS 470:273–290

    Google Scholar 

  • Pörtner HO, Farrell AP (2008) Ecology: physiology and climate change. Science 322:690–692

    PubMed  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    PubMed  Google Scholar 

  • Portt L, Norman G, Clapp C, Greenwood M, Michael T, Greenwood T (2011) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813:238–259

    CAS  PubMed  Google Scholar 

  • Sadovy de Mitcheson Y, Liu M (2008) Functional hermaphroditism in teleosts. Fish Fish 9(1):1–43

    Google Scholar 

  • Salach JI (1978) Preparation of monoamine oxidase from beef liver mitochondria. Methods Enzymol 53:495–501

    CAS  PubMed  Google Scholar 

  • Schulte MP (2014) What is environmental stress? Insights from fish living in a variable environment. J Exp Biol 217:23–34

    PubMed  Google Scholar 

  • Shin MK, Park HR, Yeo WJ, Han KN (2018) Effects of thermal stress on the mRNA expression of SOD, HSP90, and HSP70 in the Spotted Sea Bass (Lateolabrax maculatus). Ocean Sci J 53(1):43–52

    CAS  Google Scholar 

  • Smith LS, Bell GR (1964) A technique for prolonged blood sampling in free-swimming salmon. J Fish Res Board Can 21(4):711

    Google Scholar 

  • Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA (2012) Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar Environ Res 79:1–15

    CAS  PubMed  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    CAS  PubMed  Google Scholar 

  • Thorne MAS, Burns G, Fraser KPP, Hillyard G, Clark MS (2010) Transcriptional profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Mar Genom 3:35–44

    CAS  Google Scholar 

  • Tomalty KMH, Meek MH, Stephens MR, Rincón G, Fangue NA, May BP, Baerwald MR (2015) Transcriptional response to acute thermal exposure in Juvenile Chinook Salmon determined by RNAseq. Genes Genom Genet 5(7):1335–1349

    CAS  Google Scholar 

  • Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G (2012) The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol 22:557–566

    CAS  PubMed  Google Scholar 

  • Vanden Hoek TL, Li C, Shao Z, Schumacker PT, Becker LB (1997) Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol 29:2571–2583

    CAS  PubMed  Google Scholar 

  • Vargas-Chacoff L, Arjona FJ, Polakof S, Martín del Río MP, Soengas JL, Mancera JM (2009) Interactive effects of environmental salinity and temperature on metabolic responses of gilthead sea bream Sparus aurata. Comp Biochem Physiol A 154:417–424

    Google Scholar 

  • Weinstein RB, Somero GN (1998) Effects of temperature on mitochondrial function in the Antarctic fish Trematomus bernachii. J Comp Physiol 168B:190–196

    Google Scholar 

  • Windisch HS, Frickenhaus S, John U, Knust R, Pörtner HO, Lucassen M (2014) Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum). Mol Ecol 23:3469–3482

    CAS  PubMed  Google Scholar 

  • Zajączkowski S, Ziółkowski W, Badtke P, Zajączkowski MA, Flis DJ, Figarski A, Smolińska-Bylańska M, Wierzba TH (2018) Promising effects of xanthine oxidase inhibition by allopurinol on autonomic heart regulation estimated by heart rate variability (HRV) analysis in rats exposed to hypoxia and hyperoxia. PLoS One 13(2):e0192781

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basile Michaelidis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Animals received proper care in compliance with the “Guidelines for the Care and Use of Laboratory Animals” published by US National Institutes of Health (NIH publication No 85–23, revised 1996) and the “Principles of laboratory animal care” published by the Greek Government (160/1991) based on EU regulations (86/609). The protocol as well as surgery and sacrifice were approved by the Committee on the Ethics of Animal Experiments of the Directorate of Veterinary Services of Prefecture of Thessaloniki under the license number EL 54 BIO 05.

Additional information

Communicated by Bernd Pelster.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feidantsis, K., Georgoulis, I., Zachariou, A. et al. Energetic, antioxidant, inflammatory and cell death responses in the red muscle of thermally stressed Sparus aurata. J Comp Physiol B 190, 403–418 (2020). https://doi.org/10.1007/s00360-020-01278-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-020-01278-1

Keywords

Navigation