Skip to main content

Advertisement

Log in

Discovery of QTL for stay-green and heat-stress in barley (Hordeum vulgare) grown under simulated abiotic stress conditions

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

This study maps genomic regions associated with terminal heat- and drought-stress tolerance in barley (Hordeum vulgare L.). One hundred lines were randomly sampled from a ND24260 × Flagship doubled haploid population and evaluated for stay-green (SG) expression. SG expression including that of parental controls and commercial check varieties was evaluated in two controlled environments; one simulating terminal heat-stress, the other terminal water-stress. During grain-fill the greenness of the spikes (S), flag leaf (FL) and the first leaf under the flag leaf (FL-1) were phenotyped; visually (using a 0–9 scale) and via single-photon avalanche diode measurements. From the visual assessments, the green leaf area of the plant was determined, by using the difference in green area of the S and FL. Composite interval mapping detected 10 quantitative trait loci (QTL) for SG, positioned on chromosomes 3H, 4H, 5H, 6H and 7H; six of which were associated with terminal heat-stress and four with terminal water-stress. None were co-located with previously reported barley stress-response QTL and thus represent novel barley QTL. Although novel, some SG QTL mapped near chromosomal regions previously reported; such as the two heat-stress QTL mapped to bPb-5529 on 5H, adjacent to QTL reported for root length and root-shoot ratio. Detection of SG QTL in barley grown under simulated heat- and water-stressed conditions offers the potential of high through put screening for these traits. If confirmed in field trials, these genomic regions will be candidates for barley breeding programs targeting improved abiotic stress tolerance via marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SG:

Stay-green

MAS:

Marker-assisted selection

GS:

Green spike

GFL:

Green flag leaf

GFL-1:

Green first leaf under the flag leaf

LAUG:

Leaf area under green

SP:

SPAD (Single-photon avalanche diode)

DH:

Double haploid

CIM:

Composite interval mapping

DArT:

Diversity Array Technology

LOD:

Logarithm of odds

References

  • Arifuzzaman M, Sayed MA, Muzammil S, Pillen K (2014) Detection and validation of novel QTL for shoot and root traits in barley (Hordeum vulgare L.). Mol Breed 34(3):1373–1387. doi:10.1007/s11032-014-0122-3

    Article  CAS  Google Scholar 

  • Arriola KG, Kim SC, Huisden CM, Adesogan AT (2012) Stay-green ranking and maturity of corn hybrids: 1. Effects on dry matter yield, nutritional value, fermentation characteristics, and aerobic stability of silage hybrids in Florida. J Dairy Sci 95(2):964–974. doi:10.3168/jds.2011-4524

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28(1):169–183. doi:10.1016/j.biotechadv.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  • Borrell AK, Mullet JE, George-Jaeggli B, Oosterom EJ, Hammer GL, Klein PE, Jordan DR (2010) Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J Exp Bot 28:1–13. doi:10.1093/jxb/eru232

    Article  CAS  Google Scholar 

  • Cakir M, Poulsen D, Galwey NW, Ablett GA, Chalmers KJ, Platz GJ, Park RF, Lance RCM, Panozzo JF, Read BJ, Moddy DB, Barr AR, Johnston P, Li CD, Boyd WJR, Grime CR, Appels R, Jones MGK, Langridge P (2003) Mapping and QTL analysis of the barley population Tallon × Kaputar. Aust J Agric Res 54(12):1155–1162. doi:10.1071/AR02238

    Article  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105(1–2):1–14. doi:10.1016/j.fcr.2007.07.004

    Article  Google Scholar 

  • Chen GX, Krugman T, Fahima T, Chen KG, Hu Y, Röder M, Nevo E, Korol A (2010) Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C Koch. Genet Resourc Crop Evol 57(1):85–99. doi:10.1007/s10722-009-9453-z

    Article  Google Scholar 

  • Christopher JT, Manschadi AM, Hammer GL, Borrell AK (2008) Developmental and physiological traits associated with high yield and stay-green phenotype in wheat. Aust J Agric Res 59(4):354–364. doi:10.1071/AR07193

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2):169–196. doi:10.1007/s10681-005-1681-5

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363(1491):557–572. doi:10.1098/rstb.2007.2170

    Article  CAS  PubMed  Google Scholar 

  • Coombes NE (2002) The reactive tabu search for efficient correlated experimental designs. Liverpool John Moores University, Liverpool

    Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262(3):579–588. doi:10.1007/s004380051120

    Article  CAS  PubMed  Google Scholar 

  • Dailey JE, Peterson DE, Osborn TC (1988) Hordein gene expression in a low protein barley cultivar. Plant Physiol 88(2):450–453. doi:10.1104/pp.88.2.450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demey JR, Vicente-Villardón JL, Galindo-Villardón MP, Zambrano AY (2008) Identifying molecular markers associated with classification of genotypes by External Logistic Biplots. Bioinformatics 24(24):2832–2838. doi:10.1093/bioinformatics/btn552

    Article  CAS  PubMed  Google Scholar 

  • Diab AA, Teulat-Merah B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109(7):1417–1425. doi:10.1007/s00122-004-1755-0

    Article  CAS  PubMed  Google Scholar 

  • Eglinton J (2006) Flagship barley (Hordeum vulgare). Plant Breeders Rights. http://pericles.ipaustralia.gov.au/pbr_db/plant_detail.cfm?AID=10505989

  • Fox GP, Panozzo JF, Li CD, Lance RCM, Inkerman PA, Henry RJ (2003) Molecular basis of barley quality. Austr J Agric Res 54(12):1081–1101. doi:10.1071/AR02237

    Article  CAS  Google Scholar 

  • Franckowiak JD, Horsley RD, Neate SM, Schwarz PB (2007) Registration of ‘Rawson’ barley. J Plant Regist 1:37–38. doi:10.3198/jpr2006.10.0664crc

    Article  Google Scholar 

  • Gabriel KR (1971) The biplot graphical display of matrices with application to principal components analysis. Biometrika 58(3):453–467. doi:10.1093/biomet/58.3.453

    Article  Google Scholar 

  • Gous PW, Hasjim J, Franckowiak J, Fox GP, Gilbert RG (2013) Barley genotype expressing “stay-green”-like characteristics maintains starch quality of the grain during water stress condition. J Cereal Sci 1(6):414–419. doi:10.1016/j.jcs.2013.08.002

    Article  CAS  Google Scholar 

  • Gous PW, Lawson W, Kelly A, Martin A, Fox GP, Sutherland M (2012) QTL associated with barley (Hordeum vulgare) feed quality traits measured through in situ digestion. Euphytica 185(1):37–45. doi:10.1007/s10681-011-0608-6

    Article  Google Scholar 

  • Gregersen PL, Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol (Stuttg) 10:37. doi:10.1111/j.1438-8677.2008.00114.x

    Article  CAS  Google Scholar 

  • Guo P, Baum M, Varshney RK, GraneR A, Grando S, Ceccarelli S (2008) QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 163(2):203–214. doi:10.1007/s10681-007-9629-6

    Article  CAS  Google Scholar 

  • Hamblin J, Stefanova K, Angessa TT (2014) Variation in Chlorophyll Content per Unit Leaf Area in Spring Wheat and Implications for Selection in Segregating Material. PLoS ONE 9(3):e92529. doi:10.1371/journal.pone.0092529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58(2):327–338. doi:10.1093/jxb/erl225

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Lawson W, Platz GJ, Dieters M, Arief VN, German S, Fletcher S, Park RF, Singh D, Pereyra S, Franckowiak J (2011a) Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei in barley. Theor Appl Genet 123(1):55–68. doi:10.1007/s00122-011-1566-z

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Lawson W, Platz GJ, Dieters M, Arief VN, Germán S, Fletcher S, Park RF, Singh D, Pereyra S, Franckowiak J (2011b) Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei in barley. Theor Appl Genet 123(1):55–68. doi:10.1007/s00122-011-1566-z

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Lawson W, Arief VN, Fox G, Franckowiak J, Dieters MJ (2012) Grain dormancy QTL identified in a doubled haploid barley population derived from two non-dormant parents. Euphytica 188:113–122. doi:10.1007/s10681-011-0577-9

    Article  CAS  Google Scholar 

  • Jordan DR, Hunt CH, Cruickshank AW, Borrell AK, Henzell RG (2012) The relationship between the stay-green trait and grain yield in elite sorghum hybrids grown in a range of environments. Crop Sci 52(3):1153–1161. doi:10.2135/cropsci2011.06.0326

    Article  Google Scholar 

  • Joshi AK, Kumari M, Singh VP, Reddy CM, Kumar S, Rane J, Chand R (2007) Stay green trait: variation, inheritance and its association with spot blotch resistance in spring wheat (Triticum aestivum L.). Euphytica 153(1–2):59–71. doi:10.1007/s10681-006-9235-z

    Article  Google Scholar 

  • Li JH, Vasanthan T, Rossnagel B, Hoover R (2001) Starch from hull-less barley: I. Granule morphology, composition and amylopectin structure. Food Chem 74(4):395–405

    Article  CAS  Google Scholar 

  • Ling Q, Huang W, Jarvis P (2011) Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth Res 107(2):209–214. doi:10.1007/s11120-010-9606-0

    Article  CAS  PubMed  Google Scholar 

  • Mace E, Rami J, Bouchet S, Klein P, Klein R, Kilian A, Wenzl P, Xia L, Halloran K, Jordan D (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9(1):13

    Article  Google Scholar 

  • Netto AL, Campostrini E, Goncalves de Oliveira J, Bressan-Smith RE (2004) Photosynthetic pigments, nitrogen, chlorophyll α fluorescence and SPAD-502 readings in coffee leaves. Sci Hortic-Amsterdam 104(2005):199–209. doi:10.1016/j.scienta.2004.08.013

    Article  CAS  Google Scholar 

  • Phuong N, Afolayan G, El Soda M, Stützel H, Wenzel W, Uptmoor R (2014) Genetic dissection of pre-flowering growth and development in sorghum bicolor l. moench under well-watered and drought stress conditions. Agric Sci 5(11):923–934. doi:10.4236/as.2014.511100

    Article  Google Scholar 

  • Rollins JA, Drosse B, Mulki MA, Grando S, Baum M, Singh M, Ceccarelli S, Mv Korff (2013) Variation at the vernalisation genes Vrn H1 and Vrn H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria. Theor Appl Genet 126(11):2803–2824. doi:10.1007/s00122-013-2173-y

    Article  CAS  PubMed  Google Scholar 

  • Rong-hua L, Pei-guo G, Baum M, Grando S, Ceccarelli S (2006) Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in Barley. Agric Sci China 5(10):751–757. doi:10.1016/S1671-2927(06)60120-X

    Article  Google Scholar 

  • Rong H, Tang Y, Zhang H, Wua P, Chen Y, Li M, Wua G, Jiang H (2013) The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J Plant Physiol 170(15):1367–1373. doi:10.1016/j.jplph.2013.05.016

    Article  CAS  PubMed  Google Scholar 

  • Siahsar BA, Narouei M (2010) Mapping QTLs of physiological traits associated with salt tolerance in ‘Steptoe’x’Morex’ doubled haploid lines of barley at seedling stage. J Food Agric Environ 8:751–759

    Google Scholar 

  • Spano G, Fonzo ND, Perrotta C, Platani C, Ronga G, Lawlor DW, Napier JA, Shewry PR (2003) Physiological characterization of `stay green’ mutants in durum wheat. J Exp Bot 54(386):1415–1420. doi:10.1093/jxb/erg150

    Article  CAS  PubMed  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (1999) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100(8):1225–1232. doi:10.1007/s001220051428

    Article  Google Scholar 

  • Teulat B, Borries C, This D (2001) New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet 103(1):161–170. doi:10.1007/s001220000503

    Article  CAS  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51(suppl 1):329–337. doi:10.1093/jexbot/51.suppl_1.329

    Article  CAS  PubMed  Google Scholar 

  • Vaezi B, Bavei V, Shiran B (2010) Screening of barley genotypes for drought tolerance by agro-physiological traits in field condition. Afr J Agric Res 5(9):881–892. doi:10.5897/AJAR09.294

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. doi:10.1093/jhered/93.1.77

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2002) Windows QTL Cartographer: WinQtlCart V2.0

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom 7(206):1–22. doi:10.1186/1471-2164-7-206

    Article  CAS  Google Scholar 

  • Xue D-W, Chen M-C, Zhou M-X, Chen S, Mao Y, Zhang G-P (2008) QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content. J Zhejiang Univ Sci B 9(12):938–943. doi:10.1631/jzus.B0820105

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24(5):721–723. doi:10.1093/bioinformatics/btm494

    Article  CAS  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23(12):1527–1537. doi:10.1093/bioinformatics/btm143

    Article  CAS  PubMed  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421. doi:10.1111/j.1365-3180.1974.tb01084.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank and acknowledge the support of the 1000-Talents Program of the Chinese Government’s Foreign Experts Bureau, and the Grain Research and Development Corporation for a Ph.D. top-up scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen P. Fox.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gous, P.W., Hickey, L., Christopher, J.T. et al. Discovery of QTL for stay-green and heat-stress in barley (Hordeum vulgare) grown under simulated abiotic stress conditions. Euphytica 207, 305–317 (2016). https://doi.org/10.1007/s10681-015-1542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1542-9

Keywords

Navigation