Skip to main content

Advertisement

Log in

Seasonal variation of key environmental parameters in the Sea of Oman using EO data and GIS

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In this study, the seasonal and annual changes of key environmental parameters in the Sea of Oman during the period 2005–2012 have been investigated using a range of Earth Observation datasets. Furthermore, the seasonal and spatial variability of those changes to other environmental parameters for the same time period was also explored. Analysis of census of the anti-cyclonic and cyclonic eddies using the Okubo–Waiss algorithm was carried out in a Geographical Information Systems environment using the Marine Geospatial Ecology Tools. Results indicated that the Sea of Oman is mostly influenced by seasonality and by location. The Spearman’s rank correlation test shows a strong, negative correlation between Sea Surface Temperature (SST) and Chlorophyll-a (Chlor-a) in most parts of the sea during the studied period. In terms of spatial variations, eastern parts of the sea showed higher Chlor-a concentrations and lower SST values, especially during summer. The Okubo–Waiss algorithm revealed the existence of 337 eddies, 180 of which are anti-cyclonic eddies with general life span ranging from 4 to 43 weeks, while years 2008 and 2010 presented the most cyclonic eddies. The presence and duration of these eddies proved to be a great contributor in water mixing in the region. Our results clearly demonstrated that this integrated approach improved our understanding of the sea-atmosphere dynamics and environmental variability of the studied region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: http://www.eoearth.org, from Rosenstiel School of Marine and Atmospheric Science, University of Miami. Accessed 15/7/2019

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Al-Gheilani, H. M., Matsuoka, K., Al-Kindi, A. Y., Amer, S., & Waring, C. (2011). Fish kill incidents and harmful algal blooms in Omani waters. Journal of Agriculture and Marine Science, 16, 1–11.

    Google Scholar 

  • Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., et al. (2006). Climate-driven trends in contemporary ocean productivity. Nature, 444(7120), 752–755.

    Article  CAS  Google Scholar 

  • Belkin, I. M., & O’Reilly, J. E. (2009). An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. Journal of Marine Systems, 78(3), 319–326.

    Article  Google Scholar 

  • Bennett, N. (2018). Navigating a just and inclusive path towards sustainable oceans. Marine Policy, 97, 139–146.

    Article  Google Scholar 

  • Bierman, P., Lewis, M., Ostendorf, B., & Tanner, J. (2011). A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecological Indicators, 11(1), 103–114.

    Article  CAS  Google Scholar 

  • Böhm, E., Morrison, J. M., Manghnani, V., Kim, H. S., & Flagg, C. N. (1999). The Ras al Hadd Jet: remotely sensed and acoustic Doppler current profiler observations in 1994–1995. Deep Sea Research Part II: Topical Studies in Oceanography, 46(8–9), 1531–1549.

    Article  Google Scholar 

  • Bouffard, J., Naeije, M., Banks, C. J., Calafat, F. M., Cipollini, P., Snaith, H. M., et al. (2018). CryoSat ocean product quality status and future evolution. Advances in Space Research, 62(6), 1549–1563.

    Article  Google Scholar 

  • Brown, O. B., & Minnet, P. J. (1999). MODIS infrared sea surface temperature algorithm. Algorithm Theoretical Basis Document, University of Miami.

  • Byju, P., & Prasanna, K. S. (2011). Physical and biological response of the Arabian Sea to tropical cyclone Phyan and its implications. Marine Environmental Research, 71(5), 325–330.

    Article  CAS  Google Scholar 

  • Cayula, J. F., & Cornillon, P. (1992). Edge detection algorithm for SST images. Journal of Atmospheric and Oceanic Technology, 9(1), 67–80.

    Article  Google Scholar 

  • Chi, L., Wolfe, C. L. P., & Hameed, S. (2018). Intercomparison of the Gult Stream in ocean reanalyses: 1993–2010. Ocean Modelling, 125, 1–21.

    Article  Google Scholar 

  • Chin, T. M., Vazquez-Cuervo, J., & Armstrong, E. M. (2017). A multi-scale high resolution analysis of global sea surface temperature. Remote Sensing of Environment, 200, 154–169.

    Article  Google Scholar 

  • Cooper, H., Chen, Q., Fletcher, C., & Barbee, M. (2013). Assessing vulnerability due to sea level rise in Maui, Hawaii using LiDAR remote sensing and GIS. Climatic Change, 116(3–4), 547–563.

    Article  Google Scholar 

  • Dassenakis, M., Paraskevopoulou, V., Cartalis, C., Adaktilou, N., & Katsiabani, K. (2011). Remote sensing in coastal water monitoring: Applications in the eastern Mediterranean Sea (IUPAC Technical Report). Pure and Applied Chemistry, 1, 335–375.

    Article  Google Scholar 

  • Fernández-Prieto, D., Kesselmeier, J., Ellis, M., Marconcini, M., Reissell, A., Suni, T., et al. (2013). Earth observation for land–atmosphere interaction science. Biogeosciences, 10, 261–266.

    Article  Google Scholar 

  • Harrison, C. S., & Glatzmaier, G. A. (2010). Lagrangian coherent structures in the California Current System: sensitivities and limitations. Geophysical and Astrophysical Fluid Dynamics, 106(1), 22–44.

    Article  Google Scholar 

  • He, X., Pan, D., Bai, Y., Wang, T., Chen, C.-T. A., Zhu, Q., et al. (2017). Recent changes of global ocean transparency observed by SeaWiFS. Continental Shelf Research, 143, 159–166.

    Article  Google Scholar 

  • Henson, S. A., & Thomas, A. C. (2007). A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Research I, 55, 163–176.

    Article  Google Scholar 

  • Henson, S. A., & Thomas, A. C. (2008). A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Research Part I: Oceanographic Research Papers, 55(2), 163–176.

    Article  Google Scholar 

  • Ji, C., Zhang, Y., Cheng, Q., Li, Y., Jiang, T., & Liang, X. S. (2018a). Pn the relationship between the early spring Indian Ocean’s sea surface temperature (SST) and the Tibetan Plateau atmospheric heat source in summer. Global and Planetary Change, 164, 1–10.

    Article  Google Scholar 

  • Ji, C., Zhang, Y., Cheng, Q., Tsou, J., Jiang, T., & Liang, X. S. (2018b). Evaluating the impact of sea surface temperature (SST) on spatial distribution of chlorophyll-a concentration in the East China Sea. International Journal of Applied Earth Observation & Geoinformation, 68, 252–261.

    Article  Google Scholar 

  • Kaufman, Y. J., Herring, D. D., Ranson, K. J., & Collatz, G. J. (1998). Earth Observing system AM1 mission to earth. Geoscience and Remote Sensing, IEEE Transactions on, 36(4), 1045–1055.

    Article  Google Scholar 

  • L’Hégaret, P., Lacour, L., Carton, X., Roullet, G., Baraille, R., & Corréard, S. (2013). A seasonal dipolar eddy near Ras Al Hamra (Sea of Oman). Ocean Dynamics, 63(6), 633–659.

    Article  Google Scholar 

  • Markogianni, V., Kalivas, D., Petropoulos, G. P. & Dimitriou, E. (2018). An appraisal of the potential of landsat 8 in estimating Chlorophyll-a, Ammonium Concentrations and Other Water Quality Indicators. Remote Sensing, 10(7), 1018.

    Article  Google Scholar 

  • Markogianni, V., Kalivas, D., Petropoulos, G. P. & Dimitriou, E. (2020) Estimating chlorophyll-a of inland water bodies in Greece based on landsat data. Remote Sensing, 12(13), 2087

    Article  Google Scholar 

  • Martin, S. (2004). An introduction to ocean remote sensing. Cambridge: Cambridge University Press.

    Google Scholar 

  • McGillicuddy, D. J., et al. (2007). Eddy/wind interactions stimulate extraordinary midocean plankton blooms. Science, 316(5827), 1021–1026.

    Article  CAS  Google Scholar 

  • Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., et al. (2007). Global climate projections. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, et al. (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. United Kingdom and New York, USA: Cambridge University Press.

  • Miller, P. (2004). Multi-spectral front maps for automatic detection of ocean colour features from SeaWiFS. International Journal of Remote Sensing, 25(7–8), 1437–1442.

    Article  Google Scholar 

  • Mudgal, R., & Pandey, M. K. D. P. (2009). Seasonal and inter-annual variability of Chlorophyll–a in the Arabian sea from SeaWiFS data. Earth Science India, 2(1), 21–32.

    Google Scholar 

  • Nandkeolyar, N., Raman, M., Kiran, G. S., & Ajai, (2013). Comparative analysis of sea surface temperature pattern in the eastern and western gulfs of arabian sea and the red sea in recent past using satellite data. International Journal of Oceanography, 2013, 16.

    Article  Google Scholar 

  • O’Reilly, J. E., Maritorena, S., Siegel, D. A., O’Brien, M. C., Toole, D., Mitchell, B. G., et al. (2000). Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. SeaWiFS Post Launch Calibration and Validation Analyses, 3, 9–23.

    Google Scholar 

  • Palacios, D. M., Bograd, S. J., Foley, D. G., & Schwing, F. B. (2006). Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective. Deep-Sea Research Part Ii-Topical Studies in Oceanography, 53(3–4), 250–269.

    Article  Google Scholar 

  • Petihakis, G., Triantafyllou, G., Korres, G., Tsiaras, K., & Theodorou, A. (2012). Ecosystem modelling: Towards the development of a management tool for a marine coastal system part-II, ecosystem processes and biogeochemical fluxes. Journal of Marine Systems, 94, S49–S64.

    Article  Google Scholar 

  • Piontkovski, S. A., & Nezlin, N. P. (2012). Mesoscale eddies of the Arabian Sea: Physical–biological interactions. International Journal of Marine Science, 2, 51–56.

    Google Scholar 

  • Quinn, N., & Johnson, D. (1996). Cold water upwellings cover Gulf of Oman coral reefs. Coral Reefs-Journal of the International Society for Reef Studies, 15(4), 214.

    Google Scholar 

  • Resplandy, L., Lévy, M., Madec, G., Pous, S., Aumont, O., & Kumar, D. (2011). Contribution of mesoscale processes to nutrient budgets in the Arabian Sea. Journal of Geophysical Research, 116(C11), C11007.

    Article  Google Scholar 

  • Sarma, Y. V. B., Al-Hashmi, K., & Smith, S. L. (2013). Sea surface warming and its implications for harmful algal blooms off Oman. International Journal of Marine Science, 3(8), 65–71. https://doi.org/10.5376/ijms.2013.03.0008.

    Article  Google Scholar 

  • Wang, Z., DiMarco, S. F., Jochens, A. E., & Ingle, S. (2013). High salinity events in the northern Arabian Sea and Sea of Oman. Deep Sea Research Part I: Oceanographic Research Papers, 74, 14–24.

    Article  CAS  Google Scholar 

  • Xiu, P., Chai, F., Shi, L., Xue, H., & Chao, Y. (2010). A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research, 115, C03012. https://doi.org/10.1029/2009JC005657.

Download references

Acknowledgements

Authors wish to thank the reviewers for their feedback that resulted to improving the submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. Petropoulos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hajri, S.M., Petropoulos, G.P. & Markogianni, V. Seasonal variation of key environmental parameters in the Sea of Oman using EO data and GIS. Environ Dev Sustain 23, 6021–6046 (2021). https://doi.org/10.1007/s10668-020-00860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00860-5

Keywords

Navigation