Skip to main content
Log in

Stochastic modeling approaches based on neural network and linear–nonlinear regression techniques for the determination of single droplet collection efficiency of countercurrent spray towers

  • Original Paper
  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper presents a new mathematical model and a two-layer neural network approach to predict the single droplet collection efficiency (SDCE), η d, of countercurrent spray towers. SDCE values were calculated using MATLAB® algorithm for 205 different artificial scenarios given in a large range of operating conditions. Theoretical results were compared with outputs obtained from a two-layer neural network and DataFit® scientific software. The predicted model developed from linear–nonlinear regression analysis and network outputs agreed with the theoretical data, and all predictions proved to be satisfactory with a correlation coefficient of about 0.921 and 0.99, respectively. By using the proposed model, iterations between Reynolds number (Re), drag coefficient (C D) and terminal velocity values (v T) were neglected for a large range of operating conditions. SDCE values were also obtained speedily and practically for five main operating inputs used in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdul-Wahab, S. A., & Al-Alawi, S. M. (2002). Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling & Software, 17(3), 219–228.

    Article  Google Scholar 

  2. Ahmadi, G. (2004). Department of Mechanical and Aeronautical Engineering Clarkson University. Particle Transport, Deposition and Removal. ME 437/ME537.

  3. Almasri, M. N., & Kaluarachchi, J. J. (2005). Modular neural networks to predict the nitrate distribution in ground water using the onground nitrogen loading and recharge data. Environmental Modelling & Software, 20(7), 851–871.

    Article  Google Scholar 

  4. Anctil, F., Perin, C., & Andreassian, V. (2004). Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall–runoff forecasting models. Environmental Modelling & Software, 19(4), 357–368.

    Article  Google Scholar 

  5. Avsar, Y., Saral, A., Gonullu, M. T., Arslankaya, E., & Kurt, U. (2004). Neural network modelling of outdoor noise levels in a pilot area. TUBITAK Turkish Journal of Environmental Engineering and Science, 28, 149–155.

    Google Scholar 

  6. Boll, R. H. (1973). Particle collection and pressure drop in venturi scrubbers. Industrial & Engineering Chemistry Fundamentals, 12(1), 40–50.

    Article  CAS  Google Scholar 

  7. Burns, M. A., & Lionberger, R. (1999). University of Michigan College of Engineering, Course handouts for ChE 343, Lecture notes 5.

  8. Calvert, S., Lundgren, D., & Mehta, D. S. (1972). Venturi scrubber performance. Journal of the Air Pollution Control Association, 22, 529–532.

    CAS  Google Scholar 

  9. Campolo, M., Soldati A., & Andreussi, P. (1999). Forecasting river flow rate during low flow periods using neural networks. Water Resources Research, 35(11), 3547–3552.

    Article  Google Scholar 

  10. Cigizoglu, H. K. (2002). Suspended sediment estimation for rivers using artificial neural networks and sediment rating curves. TUBITAK Turkish Journal of Environmental Engineering and Science, 26, 27–36.

    Google Scholar 

  11. DataFit Help Contents Version 8.1, Description and Capabilities of DataFit.

  12. Djebbar, Y., & Alila, Y. (1998). Neural network estimation of sanitary flows, Hydroinformatics Conference, poster presentation, Copenhagen.

  13. Erturk, F. (2006). Air pollution control lecture notes, Yildiz Technical University. Department of Environmental Engineering.

  14. Fathikalajahi, J., Taheri, M., & Keshavarz, P. (2000). Mathematical modeling of spray towers for gas absorption and particle collection. Journal of Aerosol Science, 31(1), 156–157.

    Article  Google Scholar 

  15. Federal Remedition Technologies Roundtable (FRTR). Screening Matrix and Reference Guide, Version 4.0. Air Emissions/Off-Gas Treatment. 4.58 Scrubbers, Jun. 2004.

  16. Freestudy the Engineering Council. EC Graduate Level. Fluid Mechanics D203. Tutorial 1 – Fluid flow theory.

  17. Goel, K. C., & Hollands, K. G. T. (1977). A general method for predicting particulate collection efficiency of venturi scrubbers. Industrial & Engineering Chemistry Fundamentals, 16(2), 186.

    Article  CAS  Google Scholar 

  18. Goktepe, A. B., Agar, E., & Lav, A. H. (2005). Backcalculation of mechanical properties of flexible pavements using neural networks. ITU Dergisi, 2(4), 31–42.

    Google Scholar 

  19. Hall, M. J., & Minns, A. W. (1998). Regional flood frequency analysis using artificial neural networks, Hydroinformatics Conference, Copenhagen.

  20. Hamed, M. M., Khalafallah, M. G., & Hassanien, E. A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks. Environmental Modelling & Software, 19(10), 919–928.

    Article  Google Scholar 

  21. Hsu, K., Gupta, H. V., & Sorooshian, S. (1995). Artificial neural network modelling of the rainfall runoff process. Water Resources Research, 31, 2517–2530.

    Article  Google Scholar 

  22. Jain, S. K., Das, D., & Srivastava, D. K. (1999). Application of ANN for reservoir inflow prediction and operation. Journal of Water Resources Planning and Management ASCE, 125, 263–271.

    Article  Google Scholar 

  23. Jung, C. H., & Lee, K. W. (1998). Filtration of fine particles by multiple liquid droplet and gas bubble systems. Aerosol Science and Technology, 29, 389–401.

    CAS  Google Scholar 

  24. Jungblut, J., & Möller, D. P. F. (1999). Modelling and simulation of new biological wastewater treatment plants. UKSim99: Final programme, session I: Simulation in control & dynamical systems. Cambridge, England: St Catharine's College.

    Google Scholar 

  25. Karaca, F., Alagha, O., & Erturk, F. (2005). Statistical characterization of atmospheric PM10 and PM2.5 concentrations at a non-impacted suburban site of Istanbul, Turkey. Chemosphere, 59(8), 1183–1190.

    Article  CAS  Google Scholar 

  26. Karaca, F., & Ozkaya, B. (2005). NN-LEAP: a neural network-based model for controlling leachate flow-rate in a municipal solid waste landfill site. Environmental Modelling & Software, in press.

  27. Kim, H.T., Jung, C.H., Oh, S.N., & Lee, K.W. (2001). Particle removal efficiency of gravitational wet scrubber considering diffusion, interception, and impaction. Environmental Engineering Science, 18(2), 125–136.

    Article  CAS  Google Scholar 

  28. Kisi, O. (2004). River Flow Modeling using artificial neural networks. ASCE Journal of Hydrologic Enginnering, 9(1) 60–63.

    Article  Google Scholar 

  29. Kisi, O. (2005). Daily river flow forecasting using artificial neural networks and auto-regressive models. TUBITAK Turkish Journal of Environmental Engineering and Science, 29, 9–20.

    Google Scholar 

  30. Kohonen, T. (1993). State of the art in neural computing. IEEE First International Conference on Neural Networks, 1, 77–91, San Diego.

    Google Scholar 

  31. Lanzerstorfer, C. (2003). Solid/liquid–gas separation with wet scrubbers and wet electrostatic precipitators: a review. Filtration & Separation, 37(5), 30–34.

    Google Scholar 

  32. Leith, D. (2005). The University of North Carolina at Chapel Hill, ENVR 251-Air Pollution Control, Scrubbers Design.

  33. Licht, W. (1988). Air pollution control engineering. Basic calculations for particulate collection, 2nd edition. New York: Marcel Dekker.

    Google Scholar 

  34. Maier, H. R., & Dandy, G. C. (1998). Understanding the behaviour and optimising the performance of back-propagation neural networks: an empirical study. Environmental Modelling & Software, 13(2), 179–191.

    Article  Google Scholar 

  35. Massong, E., Wang, J. (1990). Introduction to computation and learning in artificial neural networks. European Journal of Operational Research, 47, 1–28.

    Article  Google Scholar 

  36. MATLAB® Help Contents V7.0, Neural Network Toolbox, What's New in Version 4.0.

  37. McCann, D. W. (2005). NNICE – a neural network aircraft icing algorithm. Environmental Modelling & Software, 20(10), 1335–1342.

    Article  Google Scholar 

  38. Milosavljevic, N., & Heikkila, P. (2001). A comprehensive approach to cooling tower design. Applied Thermal Engineering, 21(9), 899–915.

    Article  CAS  Google Scholar 

  39. Nunnari, G., Dorling, S., Schlink, U., Cawley, G., Foxall, R., & Chatterton, T. (2004). Modelling SO2 concentration at a point with statistical approaches. Environmental Modelling & Software, 19(10), 887–905.

    Article  Google Scholar 

  40. Onkal-Engin, G., Demir, I., & Engin, S. N. (2005). Determination of the relationship between sewage odour and BOD by neural networks. Environmental Modelling & Software, 20(7), 843–850.

    Article  Google Scholar 

  41. Rath, M. W. (1988). Neural network technology and its applications. John Hopkins Appl Tech Dig, 242–253.

  42. Rodriguez, M. J., & Serodes, J. B. (1999). Assessing empirical linear and non-linear modelling of residual chlorine in urban drinking water systems. Environmental Modelling & Software, 14(1), 93–102.

    Article  Google Scholar 

  43. Rogers, L. L., & Dowla, F. U. (1994). Optimization of groundwater remediation using artificial neural networks with parallel solute transport modelling. Water Resources Research, 30(2), 457–481.

    Article  CAS  Google Scholar 

  44. Rudnick, S. N., Koehler, J. L. M., Martin, K. P., Leith, D., & Cooper, D. W. (1986). Particle collection efficiency in a venturi scrubber: comparison of experiments with theory. Environmental Science & Technology, 20(3), 237–242.

    Article  CAS  Google Scholar 

  45. Saral, A., & Erturk, F. (2003). Prediction of ground level SO2 concentration using artificial neural networks. Water, Air Soil Pollution: Focus, 3, 297–306.

    CAS  Google Scholar 

  46. Sengorur, B., & Oz, C. (2002). Determination of the effects of water pollution of aquacultures using neural networks. TUBITAK Turkish Journal of Environmental Engineering and Science, 26, 95–105.

    CAS  Google Scholar 

  47. Stanley, J. (1988). Introduction of Neural Networks. California Scientific Software, p. 255.

  48. Stevenson, W. J. (1991). The use of artificial neural nets in mechanical engineering. Council for Scientific and Industrial Research Tech. Rep. AERO 91/198.

  49. Sutherland, J. W. (2002). Forces on airborne particles. The John W. Sutherland Research Page. CYBERMAN, Environment Related, Aerosols & PM.

  50. U.S. Environmental Protection Agency (EPA). Basic Concepts in Environmental Sciences. Module 3: Characteristics of Particles. Collection Mechanisms, Sept. 2002.

  51. U.S. Environmental Protection Agency (EPA). Basic Concepts in Environmental Sciences. Module 6: Air Pollutants and Control Techniques. Particulate Matter Control Techniques. Particulate Wet Scrubbers, Spray Tower Scrubbers, Sept. 2002.

  52. Wark, K., Warner, C. F., & Davis, W. T. (1998). Air pollution its origin and control, 3rd edition (pp. 286–287). Addison Wesley Longman.

  53. Wiencke, B. (2001). Gravity liquid separators for industrial refrigeration. Seminar 32-Refrigeration: Back to Basics. ASHRAE Annual Meeting in Cincinnati.

  54. Yung, S., Calvert, S., Barbarika, H. F., & Sparks, L. E. (1978). Venturi scrubber performance model. Environmental Science & Technology, 12(4), 456–459.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaan Yetilmezsoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yetilmezsoy, K., Saral, A. Stochastic modeling approaches based on neural network and linear–nonlinear regression techniques for the determination of single droplet collection efficiency of countercurrent spray towers. Environ Model Assess 12, 13–26 (2007). https://doi.org/10.1007/s10666-006-9048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-006-9048-4

Keywords

Navigation