Skip to main content
Log in

Assessment of Yamuna and associated drains used for irrigation in rural and peri-urban settings of Delhi NCR

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study assessed the quality of Yamuna River and the Najafgarh drain water for irrigational purposes in the Delhi region in terms of spatial variations in the physicochemical characteristics as well as heavy metal concentrations. The monitoring was done for the period July 2012–August 2013 representing pre-monsoon, monsoon, and post-monsoon sessions and considering six physicochemical parameters. Heavy metals such as cadmium, chromium, copper, nickel, zinc, and lead have been found in the river due to rampant discharge of industrial effluents into the river. The mean metal concentrations in the 15 sampling sites were in the range of (mg L−1) 0.02–0.64 (Cu), 0–0.42 (Cr), 0.13–2.22(Zn), 0.03–0.27 (Pb), 0–0.07 (Cd), and 0.01–0.13 (Ni). Multivariate statistics (PCA and HCA) were used to identify the possible sources of metal contamination and to examine the spatial changes in the Yamuna River as well as in the Najafgarh drain. This study reveals the occurrence of mean Cd concentration above the safe limit at Palla, Christian Ashram and Jagatpur of the Yamuna river while Punjabi Bagh of the Najafgarh drain necessitate treatment in terms of heavy metals such as Cd, Cu, Cr, Ni, Pb, and Zn before it could be rendered useful for irrigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberto, W. D., del Pilar, M. D., Valeria, A. M., Fabiana, P. S., Cecilia, H. A., & de los Ángeles, B. M. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquı́a river basin (Córdoba–Argentina). Water Research, 35(12), 2881–2894. doi:10.1016/S0043-1354(00)00592-3.

    Article  CAS  Google Scholar 

  • Ali, I., and Jain, C. (2001). Pollution potential of toxic metals in the Yamuna river at Delhi, India. Journal of Environmental Hydrology, 9.

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome, 300, 6541.

    Google Scholar 

  • Census-of-India (2011). URL: http://www.census2011.co.in/. Accessed Jan 15 2014.

  • Chabukdhara, M., & Nema, A. K. (2012a). Assessment of heavy metal contamination in hindon river sediments: a chemometric and geochemical approach. Chemosphere, 87(8), 945–953. doi:10.1016/j.chemosphere.2012.01.055.

    Article  CAS  Google Scholar 

  • Chabukdhara, M., & Nema, A. K. (2012b). Heavy metals in water, sediments, and aquatic macrophytes: river Hindon, India. Journal of Hazardous, Toxic, and Radioactive Waste, 16(3), 273–281. doi:10.1061/(asce)hz.2153-5515.0000127.

    Article  CAS  Google Scholar 

  • CPCB (2006). Water quality status of Yamuna river (1999–2005). Assessment and Development of River Basin Series: ADSORBS/41/2006-07.

  • CPCB (2013). Annual Report 2011–12.

  • DPCC (2011). Action plan: abatement of pollution in critically polluted area of Najafgarh dran basin including Okhla, Naraina, Anand Parbat and Wazirpur Indl areas.

  • Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112–118.

    Google Scholar 

  • Eaton, A. D., Franson, M. A. H., Association, A. P. H., Association, A. W. W., and Federation, W. E. (2005). Standard methods for the examination of water and wastewater. American Public Health Association.

  • European-Commission (2002). Heavy metals in waste, Final Report. DG ENV. E3(Project ENV.E.3/ETU/2000/0058).

  • Garcia, C., & Hernandez, T. (1996). Influence of salinity on the biological and biochemical activity of a calciorthird soil. Plant and Soil, 178(2), 255–263.

    Article  CAS  Google Scholar 

  • Ghosh, A. K., Bhatt, M., & Agrawal, H. (2012). Effect of long-term application of treated sewage water on heavy metal accumulation in vegetables grown in Northern India. Environmental Monitoring and Assessment, 184(2), 1025–1036.

    Article  CAS  Google Scholar 

  • Gupta, S., Satpati, S., Nayek, S., & Garai, D. (2010). Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environmental Monitoring and Assessment, 165(1–4), 169–177.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Ganjali, M., Norouzi, P., Khani, H., Nayak, A., & Agarwal, S. (2011). Electrochemical analysis of some toxic metals by ion-selective electrodes. Critical Reviews in Analytical Chemistry, 41(4), 282–313.

    Article  CAS  Google Scholar 

  • Haritash, A. K., Kaushik, C. P., Kaushik, A., Kansal, A., & Yadav, A. (2008). Suitability assessment of groundwater for drinking, irrigation and industrial use in some North Indian villages. Environmental Monitoring and Assessment, 145(1–3), 397–406. doi:10.1007/s10661-007-0048-x.

    Article  CAS  Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Research, 34(3), 807–816. doi:10.1016/S0043-1354(99)00225-0.

    Article  CAS  Google Scholar 

  • Hoek, W., Ul-Hassan, M., Ensink, J. H., Feenstra, S., Raschid-Sally, L., Munir, S., et al. (2002). Urban wastewater: a valuable resource for agriculture. A case study from Haroonabad, Pakistan. International Water Management Institute, 63.

  • Kaur, R., & Rani, R. (2006). Spatial characterization and prioritization of heavy metal contaminated soil-water resources in peri-urban areas of National Capital Territory (NCT), Delhi. Environmental Monitoring and Assessment, 123(1–3), 233–247.

    Article  CAS  Google Scholar 

  • Kaushik, A., Kansal, A., Santosh, M., Kumari, S., & Kaushik, C. P. (2009). Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. Journal of Hazardous Materials, 164(1), 265–270. doi:10.1016/j.jhazmat.2008.08.031.

    Article  CAS  Google Scholar 

  • Khillare, P., Jyethi, D. S., & Sarkar, S. (2012). Health risk assessment of polycyclic aromatic hydrocarbons and heavy metals via dietary intake of vegetables grown in the vicinity of thermal power plants. Food and Chemical Toxicology, 50(5), 1642–1652.

    Article  CAS  Google Scholar 

  • Kikuchi, T., & Tanaka, S. (2012). Biological removal and recovery of toxic heavy metals in water environment. Critical Reviews in Environmental Science and Technology, 42(10), 1007–1057. doi:10.1080/10643389.2011.651343.

    Article  CAS  Google Scholar 

  • Lattin, J. M., Carroll, J. D., & Green, P. E. (2003). Analyzing multivariate data. Cole Pacific Grove: Thomson Brooks.

    Google Scholar 

  • Lucho-Constantino, C. A., Álvarez-Suárez, M., Beltrán-Hernández, R. I., Prieto-García, F., & Poggi-Varaldo, H. M. (2005). A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environment International, 31(3), 313–323. doi:10.1016/j.envint.2004.08.002.

    Article  CAS  Google Scholar 

  • Mishra, A., & Malik, A. (2012). Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Research, 46(16), 4991–4998. doi:10.1016/j.watres.2012.06.035.

    Article  CAS  Google Scholar 

  • Mishra, A., & Malik, A. (2013). Recent advances in microbial metal bioaccumulation. Critical Reviews in Environmental Science and Technology, 43(11), 1162–1222. doi:10.1080/10934529.2011.627044.

    Article  CAS  Google Scholar 

  • Mishra, A., & Malik, A. (2014). Metal and dye removal using fungal consortium from mixed waste stream: optimization and validation. Ecological Engineering, 69, 226–231. doi:10.1016/j.ecoleng.2014.04.007.

    Article  Google Scholar 

  • Neagoe, A., Iordache, V., and Fărcăşanu, I. C. (2012). The role of organic matter in the mobility of metals in contaminated catchments. In Bio-geo interactions in metal-contaminated soils (pp. 297–325). Springer.

  • Nema, A., & Agarwal, L. (2003). Wastewater management in Najafgarh drainage basin—key to water quality improvement in river Yamuna (Vol. 1, pp. 2011). In Indian Association of Environment Management, Annual Conference. New Delhi: Foundation for Greentech Environmental Systems. Available via: www.green-ensys.org.

    Google Scholar 

  • Papadopoulos, I. (1995). Wastewater management for agriculture protection in the Near East Region. Cairo: Technical Bulletin, FAO, Regional Office for the Near East.

    Google Scholar 

  • Prajapati, S. K., Kaushik, P., Malik, A., & Vijay, V. K. (2013). Phycoremediation and biogas potential of native algal isolates from soil and wastewater. Bioresource Technology, 135, 232–238. doi:10.1016/j.biortech.2012.08.069.

    Article  CAS  Google Scholar 

  • Rattan, R., Datta, S., Chandra, S., & Saharan, N. (2002). Heavy metals and environmental quality—Indian scenario. Fertiliser News, 47(11), 21–40.

    CAS  Google Scholar 

  • Rawat, M., Singh, U. K., & Subramanian, V. (2010). Movement of toxic metals from small-scale industrial areas: a case study from Delhi, India. International Journal of Environment and Waste Management, 5(3), 224–236.

    Article  CAS  Google Scholar 

  • Ray, A. K., Tripathy, S. C., Patra, S., & Sarma, V. V. (2006). Assessment of Godavari estuarine mangrove ecosystem through trace metal studies. Environmental International, 32(2), 219–223. doi:10.1016/j.envint.2005.08.014.

    Article  CAS  Google Scholar 

  • Saxena, P., and Bhattacharyya, A. (2010). Inventorisation of environmental risk associated with hazardous waste generated in small scale industrial area of Delhi, India. In Integrated Watershed Management (pp. 176–189): Springer Netherlands.

  • Sehgal, M., Garg, A., Suresh, R., & Dagar, P. (2012). Heavy metal contamination in the Delhi segment of Yamuna basin. Environmental Monitoring and Assessment, 184(2), 1181–1196. doi:10.1007/s10661-011-2031-9.

    Article  CAS  Google Scholar 

  • Sharma, D., & Kansal, A. (2011). Water quality analysis of River Yamuna using water quality index in the national capital territory, India (2000–2009). Applied Water Science, 1(3–4), 147–157. doi:10.1007/s13201-011-0011-4.

    Article  CAS  Google Scholar 

  • Sharma, A., Bora, C. R., & Shukla, V. (2013). Evaluation of seasonal changes in physico-chemical and bacteriological characteristics of water from the Narmada river (India) using multivariate analysis. Natural Resources Research, 22(4), 283–296.

    Article  CAS  Google Scholar 

  • Shekhar, S., and Sarkar, A. (2013). Hydrogeological characterization and assessment of groundwater quality in shallow aquifers in vicinity of Najafgarh drain of NCT Delhi. Journal of Earth System Science, 1–12.

  • Shine, J. P., Ika, R. V., & Ford, T. E. (1995). Multivariate statistical examination of spatial and temporal patterns of heavy metal contamination in New Bedford Harbor marine sediments. Environmental Science and Technology, 29(7), 1781–1788.

    Article  CAS  Google Scholar 

  • Singh, M. (2001). Heavy metal pollution in freshly deposited sediments of the Yamuna river (the Ganges river tributary): a case study from Delhi and Agra urban centres, India. Environmental Geology, 40(6), 664–671. doi:10.1007/s002549900091.

    Article  CAS  Google Scholar 

  • Singh, S., & Kumar, M. (2006). Heavy metal load of soil, water and vegetables in peri-urban Delhi. Environmental Monitoring and Assessment, 120(1–3), 79–91.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., & Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Analytica Chimica Acta, 538(1–2), 355–374. doi:10.1016/j.aca.2005.02.006.

    Article  CAS  Google Scholar 

  • Singh, A., Sharma, R. K., Agrawal, M., & Marshall, F. M. (2010). Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology, 48(2), 611–619.

    Article  CAS  Google Scholar 

  • Singh, C. K., Shashtri, S., & Mukherjee, S. (2011). Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Environmental Earth Sciences, 62(7), 1387–1405.

    Article  CAS  Google Scholar 

  • Singh, E. J., Gupta, A., & Singh, N. (2013). Groundwater quality in Imphal West district, Manipur, India, with multivariate statistical analysis of data. Environmental Science and Pollution Research, 20(4), 2421–2434.

    Article  CAS  Google Scholar 

  • Srivastava, S. K., & Ramanathan, A. (2008). Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environmental Geology, 53(7), 1509–1528.

    Article  CAS  Google Scholar 

  • Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin, India. Journal of Hazardous Materials, 186(2), 1837–1846.

    Article  CAS  Google Scholar 

  • Upadhyay, R., Dasgupta, N., Hasan, A., & Upadhyay, S. K. (2011). Managing water quality of river Yamuna in NCR Delhi. Physics and Chemistry of the Earth, Parts A/B/C, 36(9–11), 372–378. doi:10.1016/j.pce.2010.03.018.

    Article  Google Scholar 

  • Upadhyaya, D., Survaiya, M., Basha, S., Mandal, S., Thorat, R. B., Haldar, S., et al. (2014). Occurrence and distribution of selected heavy metals and boron in groundwater of the Gulf of Khambhat region, Gujarat, India. Environmental Science and Pollution Research, 21(5), 3880–3890. doi:10.1007/s11356-013-2376-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the NFBSFARA, Indian Council of Agricultural Research, New Delhi for financial aid. The authors wish to thank Mr. Sumit Pal (IARI, India) for his kind help in metal analysis. The authors are also grateful to Delhi Pollution Control Committee, New Delhi for providing necessary information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anushree Malik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, A., Dey, P., Gola, D. et al. Assessment of Yamuna and associated drains used for irrigation in rural and peri-urban settings of Delhi NCR. Environ Monit Assess 187, 4146 (2015). https://doi.org/10.1007/s10661-014-4146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4146-2

Keywords

Navigation