Skip to main content
Log in

Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Studies have been demonstrating that smaller particles can lead to unexpected and diverse ecotoxicological effects when compared to those caused by the bulk material. In this study, the chemical composition, size and shape, state of dispersion, and surface’s charge, area and physicochemistry of micro (BT MP) and nano barium titanate (BT NP) were determined. Green algae Chlorella vulgaris grown in Bold’s Basal (BB) medium or Seine River water (SRW) was used as biological indicator to assess their aquatic toxicology. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic activity were evaluated. Tetragonal BT (~170 nm, 3.24 m2 g−1 surface area) and cubic BT (~60 nm, 16.60 m2 g−1) particles were negative, poorly dispersed, and readily aggregated. BT has a statistically significant effect on C. vulgaris growth since the lower concentration tested (1 ppm), what seems to be mediated by induced oxidative stress caused by the particles (increased SOD activity and decreased photosynthetic efficiency and intracellular ATP content). The toxic effects were more pronounced when the algae was grown in SRW. Size does not seem to be an issue influencing the toxicity in BT particles toxicity since micro- and nano-particles produced significant effects on algae growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ball JP, Mound BA, Nino JC, Allen JB (2014) Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications. J Biomed Mat Res Part A 102:2089–2095

    Article  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nanoletters 6:866–870

    Article  CAS  Google Scholar 

  • Brayner R, Dahoumane SA, Yéprémian C, Djediat C, Meyer M, Couté A, Fiévet F (2010) ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. Langmuir 26:6522–6528

    Article  CAS  Google Scholar 

  • Chae SR, Watanabe Y, Wiesner MR (2011) Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation. Water Res 45:308–314

    Article  CAS  Google Scholar 

  • Cheng WW, Lin ZQ, Wei BF, Zeng Q, Han B, Wei CX, Fan XJ, Hu CL, Liu LH, Huang JH, Yang X, Xi ZG (2011) Single-walled carbon nanotube induction of rat aortic endothelial cell apoptosis: reactive oxygen species are involved in the mitochondrial pathway. Int J Biochem Cell Biol 43:564–572

    Article  CAS  Google Scholar 

  • Chirino YI, Sánchez-Pérez Y, Osornio-Vargas AR, Morales-Bárcenas R, Gutiérrez-Ruíz MC, Segura-García Y, Rosas I, Pedraza-Chaverri J, García-Cuellar CM (2010) PM(10) impairs the antioxidant defense system and exacerbates oxidative stress driven cell death. Toxicol Lett 193:209–216

    Article  CAS  Google Scholar 

  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Fragioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  CAS  Google Scholar 

  • Ciofani G, Danti S, Moscato S, Albertazzi L, D’Alessandro D, Dinucci D, Chiellini F, Petrini M, Menciassi A (2010a) Preparation of stable dispersion of barium titanate nanoparticles: potential applications in biomedicine. Colloids Surf B 76:535–543

    Article  CAS  Google Scholar 

  • Ciofani G, Danti S, D’Alessandro D, Moscato S, Petrini M, Menciassi A (2010b) Barium titanate nanoparticles: highly cytocompatible dispersions in glycol-chitosan and doxorubicin complexes for cancer therapy. Nanoscale Res Lett 5:1093–1101

    Article  CAS  Google Scholar 

  • Cullen LG, Tilston EL, Mitchell GR, Collins CD, Shaw LJ (2011) Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82:1675–1682

    Article  CAS  Google Scholar 

  • den Doore de Jong JE, Roman WB (1965) Tolerance of Chlorella vulgaris for metallic and non-metallic ions. Antonie Van Leeuwenhoek 31:301–313

    Article  Google Scholar 

  • Di Giorgio ML, Di Bucchianico S, Ragnelli AM, Aimola P, Santucci S, Poma A (2011) Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res 722:20–31

    Article  Google Scholar 

  • Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70

    Article  CAS  Google Scholar 

  • Gogniat G, Thyssen M, Denis M, Pulgarin C, Dukan S (2006) The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiol Lett 258:18–24

    Article  CAS  Google Scholar 

  • Handy RD, Kammer FVD, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicity and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  • Haniu H, Saito N, Matsuda Y, Tsukahara T, Maruyama K, Usui Y, Aoki K, Takanashi S, Kobayashi S, Nomura H, Okamoto M, Shimizu M, Kato H (2013) Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response. Toxicol In Vitro 27:1679–1785

    Article  CAS  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  • Hsieh CL, Grange R, Pua Y, Psaltis D (2010) Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes. Biomaterials 31:2272–2277

    Article  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res 11:77–89

    Article  CAS  Google Scholar 

  • Kopittke PM, Blamey F, McKenna BA, Wang P, Menzies NW (2011) Toxicity of metals to roots of cowpea in relation to their binding strength. Environ Toxicol Chem 30:1827–1833

    Article  CAS  Google Scholar 

  • Lamb DT, Matanitobua VP, Palanisami T, Megharaj M, Naidu R (2013) Bioavailability of barium to plants and invertebrates in soils contaminated by barite. Environ Sci Technol 47:4670–4676

    Article  CAS  Google Scholar 

  • Lee BI (1998) Electrokinetic behavior of barium titanate powders in water. J Kor Phys Soc 32:S1152–S1155

    CAS  Google Scholar 

  • López MCB, Fourlaris G, Rand B, Riley FL (1999) Characterization of barium titanate powders: barium carbonate identification. J Am Ceram Soc 7:1777–1786

    Article  Google Scholar 

  • López-Roldán R, Jubany I, Marti V, González S, Cortina JL (2013) Ecological screening indicators of stress and risk for the Llobregat river water. J Haz Mat 263:239–247

    Article  Google Scholar 

  • Monteiro FA, Nogueirol RC, Melo LCA, Artur AG, da Rocha F (2011) Effect of barium on growth and macronutrient nutrition in Tanzania guineagrass grown in nutrient solution. Comm Soil Sci Plant Anal 42:1510–1521

    Article  CAS  Google Scholar 

  • Montgomery DC (2012) Design and analysis of experiments, 8th edn. Wiley, New York

    Google Scholar 

  • Nowack B (2009) The behavior and effects of nanoparticles in the environment. Environ Poll 157:1063–1064

    Article  CAS  Google Scholar 

  • Pang C, Selck H, Misra SK, Berhanu D, Dybowska A, Valsami-Jones E, Forbes VE (2012) Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum: a comparison of Cu added in aqueous form or as nano- and micro-CuO particles. Aquat Toxicol 106–107:114–122

    Article  Google Scholar 

  • Pereira MM, Mouton L, Yéprémian C, Couté A, Lo J, Marconcini JM, Ladeira LO, Raposo NRB, Brandão HM, Brayner R (2014) Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnol 12:15

    Article  Google Scholar 

  • Planchon M, Ferrari R, Guyot F, Gélabert A, Menguy N, Chanéac C, Thill A, Benedetti MF, Spalla O (2013) Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloids Surf B 102:158–164

    Article  CAS  Google Scholar 

  • Polonini HC, de Oliveira MAL, Ferreira AO, Raposo NRB, Grossi LN, Brandão MAF (2011) Optimization of a new dissolution test for oxcarbazepine capsules using a mixed-level factorial design. J Braz Chem Soc 22:1263–1270

    Article  CAS  Google Scholar 

  • Rodea-Palomares I, Gonzalo S, Santiago-Morales J, Leganés F, García-Calvo E, Rosal R, Fernández-Piñas F (2012) An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquat Toxicol 15:133–143

    Article  Google Scholar 

  • Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, Baalousha M (2010) Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7:50–60

    Article  CAS  Google Scholar 

  • Sivry Y, Gelabert A, Cordier L, Ferrari R, Lazar H, Juillot F, Menguy N, Benedetti MF (2014) Behavior and fate of industrial zinc oxide nanoparticles in a carbonate-rich river water. Chemosphere 95:519–526

    Article  CAS  Google Scholar 

  • Strober W (2001) Trypan blue exclusion test of cell viability. Curr Prot Immunol 21:A.3B.1–A.3B.2

    Google Scholar 

  • Tiede K, Hassellov M, Breitbarth E, Chaudhry Q, Boxall ABA (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chrom A 1216:503–509

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Biores Technol 101:5494–5500

    Article  CAS  Google Scholar 

  • Zupan G, Vitezić D, Mrsić J, Matesić D, Simonić A (1996) Effects of nimodipine, felodipine and amlodipine on electroconvulsive shock-induced amnesia in the rat. Eur J Pharmacol 310:103–106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H. Polonini thanks CAPES (04/CII-2008-Project 7, Network Brazil Nanobiotec) and Programa Ciência sem Fronteiras/CNPq (245781/2012-9) for the scholarships granted. All authors thank Institut Jacques Monod (Université Paris Diderot, Paris, France); FAPEMIG; prof. Dr. Marcone A. L. de Oliveira (experimental design); Sophie Nowak (XRD analysis); Jean-Yves Piquemal (BET analysis); and Philippe Decorse (XPS analysis).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Brayner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polonini, H.C., Brandão, H.M., Raposo, N.R.B. et al. Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae. Ecotoxicology 24, 938–948 (2015). https://doi.org/10.1007/s10646-015-1436-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1436-6

Keywords

Navigation