Skip to main content
Log in

Dimensionality reduction for production optimization using polynomial approximations

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The objective of this paper is to introduce a novel paradigm to reduce the computational effort in waterflooding global optimization problems while realizing smooth well control trajectories amenable for practical deployments in the field. In order to overcome the problems of slow convergence and non-smooth impractical control strategies, often associated with gradient-free optimization (GFO) methods, we introduce a generalized approach which represent the controls by smooth polynomial approximations either by a polynomial function or by a piecewise polynomial interpolation, which we denote as function control method (FCM) and interpolation control method (ICM), respectively. Using these approaches, we aim to optimize the coefficients of the selected functions or the interpolation points in order to represent the well-control trajectories along a time horizon. Our results demonstrate significant computational savings, due to a substantial reduction in the number of control parameters, as we seek the optimal polynomial coefficients or the interpolation points to describe the control trajectories as opposed to directly searching for the optimal control values (bottom hole pressure) at each time interval. We demonstrate the efficiency of the method on two and three-dimensional models, where we found the optimal variables using a parallel dynamic-neighborhood particle swarm optimization (PSO). We compared our FCM-PSO and ICM-PSO to the traditional formulation solved by both gradient-free and gradient-based methods. In all comparisons, both FCM and ICM show very good to superior performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avansi, G.D., Schiozer, D.J.: UNISIM-I: Synthetic model for reservoir development and management applications. Int. J. Model. Simul. Pet. Ind. 9(1), 21–30 (2015)

    Google Scholar 

  2. Awotunde, A.A.: On the joint optimization of well placement and control. In: SPE Saudi Arabia Sect. Tech. Symp. Exhib. Society of Petroleum Engineers (2014)

  3. Awotunde, A.A.: Generalized field-development optimization with well-control zonation. Comput. Geosci. 20 (1), 213–230 (2016)

    Article  Google Scholar 

  4. Bacoccoli, G., Morales, R.G., Campos, O.A.J.: The Namorado oil field: a major oil discovery in the Campos Basin, Brazil. In: Giant Oil Gas Fields Decad. 1968-1978, vol. 30, pp. 329–338 (1980)

  5. Behforooz, G.: The not-a-knot piecewise interpolatory cubic polynomial. Appl. Math. Comput. 52(1), 29–35 (1992)

    Google Scholar 

  6. Bellout, M.C., Ciaurri, D.E., Durlofsky, L.J., Foss, B., Kleppe, J.: Joint optimization of oil well placement and controls. Comput. Geosci. 16, 1061–1079 (2012)

    Article  Google Scholar 

  7. Bertrand, R., Epenoy, R.: New smoothing techniques for solving bang-bang optimal control problems—numerical results and statistical interpretation. Optim. Control Appl. Methods 23(4), 171–197 (2002)

    Article  Google Scholar 

  8. Biegler, L.T., Cervantes, A.M., Wachter, A.: Advances in simultaneous strategies for dynamic process optimization. Chem. Eng. Sci. 57(4), 575–593 (2002)

    Article  Google Scholar 

  9. Boukouvala, F., Floudas, C.A.: ARGONAUT: Algorithms for global optimization of constrained grey-box computational problems. Optim. Lett. 1–19. doi:10.1007/s11590-016-1028-2 (2014)

  10. Boukouvala, F., Hasan, M.M.F., Floudas, C.A.: Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption. J. Global Optim. 1–40. doi:10.1007/s10898-015-0376-2 (2015)

  11. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO. Eur. J. Oper. Res. 252(3), 701–727 (2015)

    Article  Google Scholar 

  12. Brouwer, D., Jansen, J.D.: Dynamic optimization of waterflooding with smart wells using optimal control theory. SPE J. 9(4), 391–402 (2004)

    Article  Google Scholar 

  13. Chen, Y., Oliver, D.S., Zhang, D.: Efficient ensemble-based closed-loop production optimization. In: SPE Symp. Improv. Oil Recover. Society of Petroleum Engineers (2008)

  14. Ciaurri, D.E., Isebor, O.J., Durlofsky, L.J.: Application of derivative-free methodologies to generally constrained oil production optimisation problems. Int. J. Math. Model. Num. Optim. 2(2), 134–161 (2011)

    Google Scholar 

  15. Ciaurri, D.E., Mukerji, T., Durlofsky, L.J.: Derivative-free optimization for oil field operations. In: Computational Optimization and Applications in Engineering and Industry, pp. 19–55. Springer (2011)

  16. Codas Duarte, A., Foss, B., Camponogara, E.: Output-constraint handling and parallelization for oil-reservoir control optimization by means of multiple shooting. SPE J. 20(4), 856–871 (2015)

    Article  Google Scholar 

  17. De Boor, C.: Convergence of cubic spline interpolation with the not-a-knot condition. Tech. rep., DTIC Document (1985)

  18. de Holanda, R.W., Gildin, E., Jensen, J.L.: Improved waterflood analysis using the capacitance-resistance model within a control systems framework. In: SPE Lat. Am. Caribb. Pet. Eng. Conf. Society of Petroleum Engineers (2015)

  19. Doublet, D.C., Aanonsen, S.I., Tai, X.C.: An efficient method for smart well production optimisation. J. Pet. Sci. Eng. 69(1), 25–39 (2009)

    Article  Google Scholar 

  20. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, vol. 1, pp. 39–43. New York (1995)

  21. Fonseca, R., Leeuwenburgh, O., Van den Hof, P., Jansen, J.D.: Improving the ensemble-optimization method through covariance-matrix adaptation. SPE J. 20(1), 155–168 (2014)

  22. Forouzanfar, F., Poquioma, W.E., Reynolds, A.C.: Simultaneous and sequential estimation of optimal placement and controls of wells using a covariance matrix adaptation algorithm. SPE J. 21(2), 501–521 (2015)

    Article  Google Scholar 

  23. Fragoso, M., Horowitz, B., Jose Roberto, P.R.: Retraining criteria for TPWL/POD surrogate based waterflodding optimization. In: SPE Reserv. Simul. Symp., pp. 23–25. Society of Petroleum Engineers (2015)

  24. Gao, G., Reynolds, A.C.: An improved implementation of the LBFGS algorithm for automatic history matching. SPE J. 11(1), 5–17 (2006)

    Article  Google Scholar 

  25. Gaspar, A.T., Avansi, G.D., dos Santos, A.A.d.S., Filho, J.C.v.H., Schiozer, D.J.: UNISIM-I-D: Benchmark studies for oil field development and production strategy selection. Int. J. Model. Simul. Pet. Ind. 9(1) (2015)

  26. Ghasemi, M., Yang, Y., Gildin, E., Efendiev, Y., Calo, V.: Fast multiscale reservoir simulations using POD-DEIM model reduction. In: SPE Reserv. Simul. Symp., pp. 23–25. Society of Petroleum Engineers (2015)

  27. Ghommem, M., Gildin, E., Ghasemi, M.: Complexity reduction of multiphase flows in heterogeneous porous media. SPE J. 21(1), 144–151 (2016)

    Article  Google Scholar 

  28. He, J., Durlofsky, L.J.: Reduced-order modeling for compositional simulation by use of trajectory piecewise linearization. SPE J. 19(5), 858–872 (2014)

    Article  Google Scholar 

  29. Humphries, T.D., Haynes, R.D., James, L.A.: Simultaneous and sequential approaches to joint optimization of well placement and control. Comput. Geosci. 18, 433–448 (2014)

    Article  Google Scholar 

  30. Isebor, O.J., Ciaurri, D.E., Durlofsky, L.J.: Generalized field-development optimization with derivative-free procedures. SPE J. 19(5), 891–908 (2014)

    Article  Google Scholar 

  31. Jacobson, D.: Differential dynamic programming methods for solving bang-bang control problems. IEEE Trans. Automat. Contr. 13(6), 661–675 (1968)

    Article  Google Scholar 

  32. Jansen, J.D., Brouwer, R., Douma, S.G.: Closed loop reservoir management. In: SPE Reserv. Simul. Symp., pp 2–4. Society of Petroleum Engineers (2009)

  33. Krogstad, S., Lie, K.A., Møyner, O., Nilsen, H.M., Raynaud, X., ard Skaflestad: SPE 173317-MS MRST-AD—an open-source framework for rapid prototyping and evaluation of reservoir simulation problems. SPE Reserv. Simul. Symp, pp. 23–25 (2015)

  34. Lie, K.A. An introduction to reservoir simulation using MATLAB: User guide for the Matlab reservoir simulation toolbox (MRST) (2015)

  35. Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16, 297–322 (2012)

    Article  Google Scholar 

  36. Lien, M., Brouwer, D., Mannseth, T., Jansen, J.D.: Multiscale regularization of flooding optimization for smart field management. SPE J. 13(2), 195–204 (2008)

    Article  Google Scholar 

  37. MathWorks: Particle swarm optimization algorithm (2015). http://www.mathworks.com/help/gads/particle-swarm-optimization-algorithm.html

  38. MathWorks: Constrained nonlinear optimization algorithms (2016). http://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html

  39. Oliver, D.S., Reynolds, A.C., Liu, N.: Optimization for nonlinear problems using sensitivities. In: Inverse Theory Pet. Reserv. Charact. Hist. Matching, chap. 8, pp. 143–192 (2008)

  40. Onwunalu, J.E., Durlofsky, L.J.: Application of a particle swarm optimization algorithm for determining optimum well location and type. Comput. Geosci. 14(1), 183–198 (2010)

    Article  Google Scholar 

  41. Pinto, M.A.S., Ghasemi, M., Sorek, N., Gildin, E., Schiozer, D.J.: Hybrid optimization for closed-loop reservoir management. In: SPE Reserv. Simul. Symp., vol. 3, pp. 1500–1510. Society of Petroleum Engineers (2015)

  42. Reynolds, A.C., Oliveira, D.: An adaptive hierarchical algorithm for estimation of optimal well controls. In: SPE Reserv. Simul. Symp., pp. 1–26 (2013)

  43. Sarma, P., Durlofsky, L.J., Aziz, K., Chen, W.H.: Efficient real-time reservoir management using adjoint-based optimal control and model updating. Comput. Geosci. 10(1), 3–36 (2006)

    Article  Google Scholar 

  44. Seydenschwanz, M.: Convergence results for the discrete regularization of linear-quadratic control problems with bang–bang solutions. Comput. Optim. Appl. 61(3), 731–760 (2015)

    Article  Google Scholar 

  45. Shirangi, M.G., Durlofsky, L.J.: Closed-loop field development under uncertainty by use of optimization with sample validation. SPE J. 20(5), 908–922 (2015)

    Article  Google Scholar 

  46. Shuai, Y., White, C.D., Zhang, H., Sun, T.: Using multiscale regularization to obtain realistic optimal control strategies. In: SPE Reserv. Simul. Symp., pp. 21–23. Society of Petroleum Engineers (2011)

  47. Silva, C., Trélat, E.: Smooth regularization of bang-bang optimal control problems. IEEE Trans. Automat. Contr. 55(11), 2488–2499 (2010)

    Article  Google Scholar 

  48. Sudaryanto, B., Yortsos, Y.C.: Optimization of fluid front dynamics in porous media using rate control. I. Equal mobility fluids. Phys. Fluids 12, 1656 (2000)

    Article  Google Scholar 

  49. Sudaryanto, B., Yortsos, Y.C.: Optimization of displacements in porous media using rate control. In: SPE Annu. Tech. Conf. Exhib. Society of Petroleum Engineers (2001)

  50. UNICAMP: UNISIM-I: Benchmark case (2016)

  51. van Essen, G., Van den Hof, P., Jansen, J.D.: Hierarchical long-term and short-term production optimization. SPE J. 16(1), 191–199 (2011)

  52. Wang, C., Li, G., Reynolds, A.C.: Production optimization in closed-loop reservoir management. SPE J. 14(3), 506–523 (2009)

    Article  Google Scholar 

  53. Zandvliet, M., Bosgra, O., Jansen, J.D., Van den Hof, P., Kraaijevanger, J.: Bang-bang control and singular arcs in reservoir flooding. J. Petrol. Sci. Eng. 58(1), 186–200 (2007)

  54. Zhang, F., Reynolds, A.C.: Optimization algorithms for automatic history matching of production data. In: ECMOR VIII-8th European Conference on the Mathematics of Oil Recovery (2002)

  55. Zhao, H., Chen, C., Do, S., Oliveira, D., Li, G., Reynolds, A.C.: Maximization of a dynamic quadratic interpolation model for production optimization. SPE J. 18(6), 1012–1025 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Gildin.

Additional information

C. A. Floudas, deceased on August 14, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorek, N., Gildin, E., Boukouvala, F. et al. Dimensionality reduction for production optimization using polynomial approximations. Comput Geosci 21, 247–266 (2017). https://doi.org/10.1007/s10596-016-9610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9610-3

Keywords

Navigation