Skip to main content
Log in

Melanoma cell metastasis via P-selectin-mediated activation of acid sphingomyelinase in platelets

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastatic dissemination of cancer cells is one of the hallmarks of malignancy and accounts for approximately 90 % of human cancer deaths. Within the blood vasculature, tumor cells may aggregate with platelets to form clots, adhere to and spread onto endothelial cells, and finally extravasate to form metastatic colonies. We have previously shown that sphingolipids play a central role in the interaction of tumor cells with platelets; this interaction is a prerequisite for hematogenous tumor metastasis in at least some tumor models. Here we show that the interaction between melanoma cells and platelets results in rapid and transient activation and secretion of acid sphingomyelinase (Asm) in WT but not in P-selectin-deficient platelets. Stimulation of P-selectin resulted in activation of p38 MAPK, and inhibition of p38 MAPK in platelets prevented the secretion of Asm after interaction with tumor cells. Intravenous injection of melanoma cells into WT mice resulted in multiple lung metastases, while in P-selectin-deficient mice pulmonary tumor metastasis and trapping of tumor cells in the lung was significantly reduced. Pre-incubation of tumor cells with recombinant ASM restored trapping of B16F10 melanoma cells in the lung in P-selectin-deficient mice. These findings indicate a novel pathway in tumor metastasis, i.e., tumor cell mediated activation of P-selectin in platelets, followed by activation and secretion of Asm and in turn release of ceramide and tumor metastasis. The data suggest that p38 MAPK acts downstream from P-selectin and is necessary for the secretion of Asm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mehlen P, Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6:449–458. doi:10.1038/nrc1886

    Article  CAS  PubMed  Google Scholar 

  2. Gasic GJ, Gasic TB, Galanti N, Johnson T, Murphy S (1973) Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer 11:704–718. doi:10.1002/ijc.2910110322

    Article  CAS  PubMed  Google Scholar 

  3. Gasic GJ, Gasic TB, Stewart CC (1968) Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci USA 61:46–52. doi:10.1073/pnas.61.1.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Honn KV, Grossi IM, Timar J, Chopra H, Taylor JD (1991) Platelets and Cancer metastasis. In: Orr WF, Buchanan MR, Weiss L (eds) Microcirculation in cancer metastasis, vol 6154. CRC, Taylor & Francis, p 328

    Google Scholar 

  5. Karpatkin S, Pearlstein E (1981) Role of platelets in tumor cell metastases. Ann Intern Med 95:636–641. doi:10.7326/0003-4819-95-5-636

    Article  CAS  PubMed  Google Scholar 

  6. Grossi IM, Fitzgerald LA, Kendall A, Taylor JD, Sloane BF, Honn KV (1987) Inhibition of human tumor cell induced platelet aggregation by antibodies to platelet glycoproteins Ib and IIb/IIIa. Proc Soc Exp Biol Med 186:378–383. doi:10.3181/00379727-186-3-rc1

    Article  CAS  PubMed  Google Scholar 

  7. Karpatkin S, Pearlstein E, Ambrogio C, Coller BS (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81:1012–1019. doi:10.1172/JCI113411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kimoto M, Ando K, Koike S, Matsumoto T, Jibu T, Moriya H, Kanegasaki S (1993) Significance of platelets in an antimetastatic activity of bacterial lipopolysaccharide. Clin Exp Metastasis 11:285–292. doi:10.1007/bf00121171

    Article  CAS  PubMed  Google Scholar 

  9. Kim YJ, Borsig L, Varki NM, Varki A (1998) P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA 95:9325–9330. doi:10.1073/pnas.95.16.9325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stone JP, Wagner DD (1993) P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J Clin Invest 92:804–813. doi:10.1172/JCI116654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Felding-Habermann B, Habermann R, Saldivar E, Ruggeri ZM (1996) Role of beta3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem 271:5892–5900. doi:10.1074/jbc.271.10.5892

    Article  CAS  PubMed  Google Scholar 

  12. Trikha M, Zhou Z, Timar J, Raso E, Kennel M, Emmell E, Nakada MT (2002) Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res 62:2824–2833

    CAS  PubMed  Google Scholar 

  13. Amirkhosravi A, Mousa SA, Amaya M, Blaydes S, Desai H, Meyer T, Francis JL (2003) Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost 90:549–554. doi:10.1267/THRO03030549

    CAS  PubMed  Google Scholar 

  14. Nierodzik ML, Klepfish A, Karpatkin S (1995) Role of platelets, thrombin, integrin IIb–IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thromb Haemost 74:282–290

    CAS  PubMed  Google Scholar 

  15. Tang DG, Onoda JM, Steinert BW, Grossi IM, Nelson KK, Umbarger L, Diglio CA, Taylor JD, Honn KV (1993) Phenotypic properties of cultured tumor cells: integrin alpha IIb beta 3 expression, tumor-cell-induced platelet aggregation, and tumor-cell adhesion to endothelium as important parameters of experimental metastasis. Int J Cancer 54:338–347. doi:10.1002/ijc.2910540229

    Article  CAS  PubMed  Google Scholar 

  16. Carpinteiro A, Becker KA, Japtok L, Hessler G, Keitsch S, Pozgajova M, Schmid KW, Adams C, Muller S, Kleuser B, Edwards MJ, Grassme H, Helfrich I, Gulbins E (2015) Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol Med 7:714–734. doi:10.15252/emmm.201404571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carpinteiro A, Beckmann N, Seitz A, Hessler G, Wilker B, Soddemann M, Helfrich I, Edelmann B, Gulbins E, Becker KA (2016) Role of acid sphingomyelinase-induced signaling in melanoma cells for hematogenous tumor metastasis. Cell Physiol Biochem 38:1–14. doi:10.1159/000438604

    Article  CAS  PubMed  Google Scholar 

  18. Schissel SL, Keesler GA, Schuchman EH, Williams KJ, Tabas I (1998) The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biol Chem 273:18250–18259

    Article  CAS  PubMed  Google Scholar 

  19. Theoret JF, Yacoub D, Hachem A, Gillis MA, Merhi Y (2011) P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation. Thromb Res 128:243–250. doi:10.1016/j.thromres.2011.04.018

    Article  CAS  PubMed  Google Scholar 

  20. Begonja AJ, Geiger J, Rukoyatkina N, Rauchfuss S, Gambaryan S, Walter U (2007) Thrombin stimulation of p38 MAP kinase in human platelets is mediated by ADP and thromboxane A2 and inhibited by cGMP/cGMP-dependent protein kinase. Blood 109:616–618. doi:10.1182/blood-2006-07-038158

    Article  CAS  PubMed  Google Scholar 

  21. Dangelmaier C, Jin J, Daniel JL, Smith JB, Kunapuli SP (2000) The P2Y1 receptor mediates ADP-induced p38 kinase-activating factor generation in human platelets. Eur J Biochem 267:2283–2289. doi:10.1046/j.1432-1327.2000.01235.x

    Article  CAS  PubMed  Google Scholar 

  22. Elstad MR, La Pine TR, Cowley FS, McEver RP, McIntyre TM, Prescott SM, Zimmerman GA (1995) P-selectin regulates platelet-activating factor synthesis and phagocytosis by monocytes. J Immunol 155:2109–2122

    CAS  PubMed  Google Scholar 

  23. Ostrovsky L, King AJ, Bond S, Mitchell D, Lorant DE, Zimmerman GA, Larsen R, Niu XF, Kubes P (1998) A juxtacrine mechanism for neutrophil adhesion on platelets involves platelet-activating factor and a selectin-dependent activation process. Blood 91:3028–3036

    CAS  PubMed  Google Scholar 

  24. Rasheed H, Saeed SA (2004) Involvement of thromboxane A2 and tyrosine kinase in the synergistic interaction of platelet activating factor and calcium ionophore A23187 in human platelet aggregation. Exp Mol Med 36:220–225. doi:10.1038/emm.2004.30

    Article  CAS  PubMed  Google Scholar 

  25. Massberg S, Vogt F, Dickfeld T, Brand K, Page S, Gawaz M (2003) Activated platelets trigger an inflammatory response and enhance migration of aortic smooth muscle cells. Thromb Res 110:187–194. doi:10.1016/s0049-3848(03)00342-6

    Article  CAS  PubMed  Google Scholar 

  26. Muylle L, Joos M, Wouters E, De Bock R, Peetermans ME (1993) Increased tumor necrosis factor alpha (TNF alpha), interleukin 1, and interleukin 6 (IL-6) levels in the plasma of stored platelet concentrates: relationship between TNF alpha and IL-6 levels and febrile transfusion reactions. Transfusion 33:195–199. doi:10.1046/j.1537-2995.1993.33393174443.x

    Article  CAS  PubMed  Google Scholar 

  27. Goggel R, Winoto-Morbach S, Vielhaber G, Imai Y, Lindner K, Brade L, Brade H, Ehlers S, Slutsky AS, Schutze S, Gulbins E, Uhlig S (2004) PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med 10:155–160. doi:10.1038/nm977

    Article  PubMed  Google Scholar 

  28. Mathias S, Younes A, Kan CC, Orlow I, Joseph C, Kolesnick RN (1993) Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science 259:519–522. doi:10.1126/science.8424175

    Article  CAS  PubMed  Google Scholar 

  29. Beaulieu LM, Lin E, Mick E, Koupenova M, Weinberg EO, Kramer CD, Genco CA, Tanriverdi K, Larson MG, Benjamin EJ, Freedman JE (2014) Interleukin 1 receptor 1 and interleukin 1beta regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler Thromb Vasc Biol 34:552–564. doi:10.1161/ATVBAHA.113.302700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brooks AC, Menzies-Gow NJ, Wheeler-Jones CP, Bailey SR, Elliott J, Cunningham FM (2009) Regulation of platelet activating factor-induced equine platelet activation by intracellular kinases. J Vet Pharmacol Ther 32:189–196. doi:10.1111/j.1365-2885.2008.01020.x

    Article  CAS  PubMed  Google Scholar 

  31. Hwang SB, Lee CS, Cheah MJ, Shen TY (1983) Specific receptor sites for 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) on rabbit platelet and guinea pig smooth muscle membranes. Biochemistry 22:4756–4763. doi:10.1021/bi00289a022

    Article  CAS  PubMed  Google Scholar 

  32. Schaufelberger HD, Uhr MR, McGuckin C, Logan RP, Misiewicz JJ, Gordon-Smith EC, Beglinger C (1994) Platelets in ulcerative colitis and Crohn’s disease express functional interleukin-1 and interleukin-8 receptors. Eur J Clin Invest 24:656–663. doi:10.1111/j.1365-2362.1994.tb01057.x

    Article  CAS  PubMed  Google Scholar 

  33. Romiti E, Vasta V, Meacci E, Farnararo M, Linke T, Ferlinz K, Sandhoff K, Bruni P (2000) Characterization of sphingomyelinase activity released by thrombin-stimulated platelets. Mol Cell Biochem 205:75–81

    Article  CAS  PubMed  Google Scholar 

  34. Simon CG Jr, Chatterjee S, Gear AR (1998) Sphingomyelinase activity in human platelets. Thromb Res 90:155–161. doi:10.1016/S0049-3848(98)00033-4

    Article  CAS  PubMed  Google Scholar 

  35. Hannun YA, Newcomb B (2015) A new twist to the emerging functions of ceramides in cancer: novel role for platelet acid sphingomyelinase in cancer metastasis. EMBO Mol Med 7:692–694. doi:10.15252/emmm.201505161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E, Matteoli M, Verderio C (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28:1043–1054. doi:10.1038/emboj.2009.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsuo Y, Amano S, Furuya M, Namiki K, Sakurai K, Nishiyama M, Sudo T, Tatsumi K, Kuriyama T, Kimura S, Kasuya Y (2006) Involvement of p38alpha mitogen-activated protein kinase in lung metastasis of tumor cells. J Biol Chem 281:36767–36775. doi:10.1074/jbc.M604371200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank F. Witte, S. Moyrer and S. Harde for excellent help with the manuscript, artwork and animal experiments. This study was supported by DFG Grant Gu 335/24-1 to Erich Gulbins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Carpinteiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Research involving animal and human rights

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Katrin Anne Becker and Nadine Beckmann have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, K.A., Beckmann, N., Adams, C. et al. Melanoma cell metastasis via P-selectin-mediated activation of acid sphingomyelinase in platelets. Clin Exp Metastasis 34, 25–35 (2017). https://doi.org/10.1007/s10585-016-9826-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-016-9826-6

Keywords

Navigation