Skip to main content
Log in

UV-ozone patterning of micro-nano fibrillated cellulose (MNFC) with alkylsilane self-assembled monolayers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We report on a facile photolithography-based procedure for surface energy patterning of novel micro-nano fibrillated cellulose (MNFC) films and demonstrate spatial control of protein adsorption. The kinetics of oxidative degradation of chemisorbed hydrophobic alkylsilane monolayers on MNFC upon exposure to UV/ozone and the effect on the adsorption of bovine serum albumin (BSA) as a function of pH were studied using surface sensitive techniques. Wetting properties, surface morphology and surface chemical composition of the MNFC films were investigated by using water contact angle goniometry, atomic force microscopy and X-ray photoelectron spectroscopy, respectively. Optical microscopy was used to give a spatial-specific visualization of adsorbed dye-tagged BSA. UV/ozone exposure turned the initially hydrophobic alkylsilane covered MNFC substrate into a hydrophilic surface. As a result, significant changes in local wetting characteristics were observed leading to a quantitative change in BSA adsorption. Moreover, by using a UV mask, it was possible to create a hydrophobic-hydrophilic pattern on the MNFC film, and thus spatially-resolved adsorption of protein patterns were achieved. These results extend the understanding and further the applicability of MNFC films towards microfluidic-based (bio)diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelmouleh M, Boufi S, Ben Salah A, Belgacem MN, Gandini A (2002) Interaction of silane coupling agents with cellulose. Langmuir 18:3203–3208. doi:10.1021/la011657g

    Article  CAS  Google Scholar 

  • Arkles B (1977) Tailoring surfaces with silanes. ChemTech 7:766–778

    CAS  Google Scholar 

  • Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the scienta ESCA300 database. Wiley, Chichester

    Google Scholar 

  • Bračič M, Mohan T, Kargl R, Griesser T, Hribernik S, Köstler S, Stana-Kleinschek K, Fras-Zemljič L (2014) Preparation of PDMS ultrathin films and patterned surface modification with cellulose. RSC Adv 4:11955–11961. doi:10.1039/c3ra47380e

    Article  Google Scholar 

  • Charreau H, Foresti ML, Vázquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80. doi:10.2174/187221013804484854

    Article  CAS  Google Scholar 

  • Cunha AG, Freire C, Silvestre A, Neto CP, Gandini A, Belgacem MN, Chaussy D, Beneventi D (2010) Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas-solid reaction. J Colloid Interface Sci 344:588–595. doi:10.1016/S1359-8368(98)00055-9

    Article  CAS  Google Scholar 

  • DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1997) Chemical kinetics and photochemical data for use in stratospheric modeling, evaluation number 12. JPL Publication 97-4. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA, pp 149–219

  • Dulcey CS, Georger JH Jr, Krauthamer V, Stenger DA, Fare TL, Calvert JM (1991) Deep UV photochemistry of chemisorbed monolayers: patterned coplanar molecular assemblies. Science 252:551–554. doi:10.1126/science.2020853

    Article  CAS  Google Scholar 

  • Fadeev AY, McCarthy TJ (2000) Self-assembly is not the only reaction possible between alkyltrichlorosilanes and surfaces: monomolecular and oligomeric covalently attached layers of dichloro- and trichloroalkylsilanes on silicon. Langmuir 16:7268–7274. doi:10.1021/la000471z

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165. doi:10.1021/bm801065u

    Article  CAS  Google Scholar 

  • He Q, Ma C, Hu X, Chen H (2013) Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning. Anal Chem 85:1327–1331. doi:10.1021/ac303138x

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585. doi:10.1002/adma.200803174

    Article  CAS  Google Scholar 

  • Jin M, Wang J, Hao Y, Liao M, Zhao Y (2011) Tunable geometry and wettability of organosilane nanostructured surfaces by water content. Polym Chem 2:1658–1660. doi:10.1039/c1py00246e

    Article  CAS  Google Scholar 

  • Johansson L-S (2002) Monitoring fibre surfaces with XPS in papermaking processes. Microchim Acta 138:217–223. doi:10.1007/s006040200025

    Article  CAS  Google Scholar 

  • Kargl R, Mohan T, Köstler S, Spirk S, Doliška A, Stana-Kleinschek K, Ribitsch V (2013) Functional patterning of biopolymer thin films using enzymes and lithographic methods. Adv Funct Mater 23:308–315. doi:10.1002/adfm.201200607

    Article  CAS  Google Scholar 

  • Korhonen JT, Huhtamäki T, Verho T, Ras RHA (2014) Hollow polysiloxane nanostructures based on pressure-induced film expansion. Surf Innov 2:116–126. doi:10.1680/si.13.00047

    Article  CAS  Google Scholar 

  • Li S, Zhang S, Wang X (2008) Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir 24:5585–5590. doi:10.1021/la800157t

    Article  CAS  Google Scholar 

  • Malamud D, Drysdale JW (1978) Isoelectric points of proteins: a table. Anal Biochem 86:620–647. doi:10.1016/0003-2697(78)90790-x

    Article  CAS  Google Scholar 

  • McGovern ME, Kallury KMR, Thompson M (1994) Role of solvent on the silanization of glass with octadecyltrichlorosilane. Langmuir 10:3607–3614. doi:10.1021/la00022a038

    Article  CAS  Google Scholar 

  • Milanez DH, Amaral RM, Faria LIL, Gregolin JAR (2013) Assessing nanocellulose developments using science and technology indicators. Mat Res 16:635–641. doi:10.1590/S1516-14392013005000033

    Article  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598. doi:10.1002/adma.200803174

    Article  CAS  Google Scholar 

  • Österberg M, Peresin MS, Johansson L-S, Tammelin T (2013) Clean and reactive nanostructured cellulose surface. Cellulose 20:983–990. doi:10.1007/s10570-013-9920-8

    Article  Google Scholar 

  • Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GW (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620. doi:10.1021/la010384m

    Article  CAS  Google Scholar 

  • Peresin MS, Vartiainen J, Kunnari V, Kaljunen T, Tammelin T, Qvintus P (2012) Large-scale nanofibrillated cellulose film: an overview on its production, properties, and potential applications. In: Proceeding of the 4th International Conference on Pulping, Papermaking and Biotechnology (ICPPB’12), Nanjing, China, pp 891–895

  • Rollings DAE, Veinot JGC (2008) Polysiloxane nanofibers via surface initiated polymerization of vapor phase reagents: a mechanism of formation and variable wettability of fiber-bearing substrates. Langmuir 24:13653–13662. doi:10.1021/la801595m

    Article  CAS  Google Scholar 

  • Silva RA, Urzúa MD, Petri DFS, Dubin PL (2010) Protein adsorption onto polyelectrolyte layers: effects of protein hydrophobicity and charge anisotropy. Langmuir 26:14032–14038. doi:10.1021/la102254g

    Article  CAS  Google Scholar 

  • Song J, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a review. Nord Pulp Pap Res J 28:216–238. doi:10.3183/NPPRJ-2013-28-02-p216-238

    Article  CAS  Google Scholar 

  • Stevens MJ (1999) Thoughts on the structure of alkylsilane monolayers. Langmuir 15:2773–2778. doi:10.1021/la981064e

    Article  CAS  Google Scholar 

  • Swerin A, Ödberg L, Lindström T (1990) Deswelling of hardwood kraft pulp fibers by cationic polymers: the effect on wet pressing and sheet properties. Nord Pulp Pap Res J 5:188–196. doi:10.3183/NPPRJ-1990-05-04-p188-196

    Article  CAS  Google Scholar 

  • Tammelin T, Hippi U, Salminen A (2013) Method for the preparation of NFC films on supports. PCT Int Appl, WO 2013060934, PCT/FI2012/051015

  • Tanford C, Buzzell JG (1956) The viscosity of aqueous solutions of bovine serum albumin between pH 4.3 and 10.5. J Phys Chem 60:225–231. doi:10.1021/j150536a020

    Article  CAS  Google Scholar 

  • Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554. doi:10.1021/cr9502357

    Article  CAS  Google Scholar 

  • Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999) Chemical modification of henequén fibers with an organosilane coupling agent. Compos Part B Eng 30:321–331. doi:10.1016/S1359-8368(98)00055-9

    Article  Google Scholar 

  • Wang X, Liu G, Zhang G (2012) Effect of surface wettability on ion-specific protein adsorption. Langmuir 28:14642–14653. doi:10.1021/la303001j

    Article  CAS  Google Scholar 

  • Wolfberger A, Kargl R, Griesser T, Spirk S (2014) Photoregeneration of trimethylsilyl cellulose as a tool for microstructuring ultrathin cellulose supports. Molecules 19:16266–16273. doi:10.3390/molecules191016266

    Article  CAS  Google Scholar 

  • Ye T, McArthur EA, Borguet E (2005) Mechanism of UV photoreactivity of alkylsiloxane self-assembled monolayers. J Phys Chem B 109:9927–9938. doi:10.1021/jp0474273

    Article  CAS  Google Scholar 

  • Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251. doi:10.1039/c3lc50169h

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Academy of Finland (264743). Dr. Ville Jokinen is thanked for providing the patterned steel masks used in the UV/O3 patterning. Dr. Juan Delgado, Maija Vuoriluoto, Ritva Kivelä, Marja Kärkkäinen, Rita Hatakka and Anu Anttila are acknowledged for their valued guidance.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval of the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokanathan R. Arcot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kämäräinen, T., Arcot, L.R., Johansson, LS. et al. UV-ozone patterning of micro-nano fibrillated cellulose (MNFC) with alkylsilane self-assembled monolayers. Cellulose 23, 1847–1857 (2016). https://doi.org/10.1007/s10570-016-0942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0942-x

Keywords

Navigation