Skip to main content
Log in

Physical structure and thermal behavior of ethylcellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

An Erratum to this article was published on 28 March 2015

Abstract

The physical structure and properties of ethylcellulose (EC) powders of different molecular weights were examined. A molecular weight in the range of 20–144 kDa with a large polydispersity was determined. EC thermal analysis revealed a glass transition at ~130 °C and a melting temperature at ~180 °C. Glass transition temperatures increased with polymer molecular weight. Wide angle (WAXS) analysis detected an amorphous broad peak at q = 1.5 Å−1 and a distinct Bragg’s peak at 12.6 Å, which seems to be related to a supramolecular ordered structure of the polymer. These observations were confirmed using high temperature powder X-ray diffraction analysis where the crystalline peak disappeared above the melting temperature of the polymer. Ultra-small angle (USAXS) results were fitted to the Bouacage fractal unified model and fractals with an average size of 100–600 nm with a relatively smooth surface were predicted. This prediction was confirmed by transmission electron microscopy (TEM) images. According to our results, the EC polymer has a semi-crystalline structure, with crystalline domains within an amorphous background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal V, Huber GW, Conner WC Jr, Auerbach SM (2011) Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures. J Chem Phys 135:1–13

    Article  Google Scholar 

  • Aiache JM, Gauthier P, Aiache S (1992) New gelification method for vegetable oils I: cosmetic application. Int J Cosmetic Sci 14:228–234

    Article  CAS  Google Scholar 

  • Atalla RH, Isogai A (1998) Recent developments in spectroscopic and chemical characterization of cellulose. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 123–157

    Google Scholar 

  • Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Cryst 28:717–728

    Article  CAS  Google Scholar 

  • Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Cryst 29:134–146

    Article  CAS  Google Scholar 

  • Cavalcanti OA, Petenuc B, Bedin AC, Pineda EAG, Hechenleitner AAW (2004) Characterisation of ethylcellulose films containing natural polysaccharides by thermal analysis and FTIR spectroscopy. Acta Farm Bonaerense 23:53–57

    CAS  Google Scholar 

  • Cousins SK, Brown RM (1995) Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as initial step in crystalization. Polymer 36:3885–3888

    Article  CAS  Google Scholar 

  • Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M, Kucera S, McGinity JW (2004) Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm 269:509–522

    Article  CAS  Google Scholar 

  • Duarte ARC, Gordillo MD, Cardoso MM, Simplicio AL, Duarte CMM (2006) Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation. Int J Pharm 311:50–54

    Article  CAS  Google Scholar 

  • Ethylcellulose polymers technical handbook (2005). Dow Chemical Company, http://www.dow.com/dowwolff/en/pdfs/192-00818.pdf

  • Flory PJ, Vrij A (1963) Melting points of linear-chain homologs, the normal paraffin hydrocarbons. J Am Chem Soc 85:3548–3553

    Article  CAS  Google Scholar 

  • Follonier N, Doelker E, Cole ET (1994) Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained release capsules containing high loading of freely soluble drugs. Drug Dev Ind Pharm 20:1323–1339

    Article  CAS  Google Scholar 

  • Fox TG, Flory PJ (1950) Second order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys 21:581–591

    Article  CAS  Google Scholar 

  • Freelon B, Sutharb K, Ilavsky J (2013) A multi-length-scale USAXS/SAXS facility: 10–50 keV small-angle X-ray scattering instrument. J Appl Cryst 46:1508–1512

    Article  CAS  Google Scholar 

  • French AD (2012) Combining computational chemistry and crystallography for a better understanding of the structure of cellulose. Adv Cacbohyd Chem Biochem 67:19–93

    Article  CAS  Google Scholar 

  • Gopalan M, Mandelkern L (1967) The effect of crystallization temperature and molecular weight on the melting temperature of linear polyethylene. J Phys Chem 71:3833–3841

    Article  CAS  Google Scholar 

  • Hughes NE, Marangoni AG, Wright AJ, Rogers MA, Rush JWE (2009) Potential food applications of edible oil organogels. Food Sci Tech 20:470–480

    Article  CAS  Google Scholar 

  • Ilavsky J (2012) Nika: software for two-dimensional data reduction. J Appl Cryst 45:324–328

    Article  CAS  Google Scholar 

  • Ilavsky J, Jemian PR (2009) Irena: tool suite for modeling and analysis of small-angle scattering. J Appl Cryst 42:347–353

    Article  CAS  Google Scholar 

  • Ilavsky J, Jemian PR, Allen AJ, Zhang F, Levine LE, Long GG (2009) Ultra-small-angle X-ray scattering at the advanced photon source. J Appl Cryst 42:469–479

    Article  CAS  Google Scholar 

  • Ilavsky J, Allen AJ, Levine LE, Zhang F, Jemianc PR, Longa GG (2012) High-energy ultra-small-angle X-ray scattering instrument at the advanced photon source. J Appl Cryst 45:1318–1320

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Jeffries R (1968) Preparation and properties of films and fibers of disordered cellulose. J Appl Polym Sci 12:425–445

    Article  CAS  Google Scholar 

  • Jullien R (1987) Aggregation phenomena and fractal aggregates. Contemp Phys 28:477–493

    Article  Google Scholar 

  • Knill CJ, Kennedy JF (1998) Cellulosic biomass-derived products. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York, pp 937–956

    Google Scholar 

  • Koch W (1937) Properties and uses of ethylcellulose. Ind Ing Chem 29:687–690

    Article  CAS  Google Scholar 

  • Kondo T (1998) Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 69–98

    Google Scholar 

  • Kondo T, Sawatari C (1996) A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–399

    Article  CAS  Google Scholar 

  • Maki R, Suihko E, Korhonen O, Pitkanen H, Niemi R, Lehtonen M, Ketolainen J (2006) Controlled release of saccharides from matrix tablets. Eur J Pharm Biopharm 62:163–170

    Article  Google Scholar 

  • Meakin P, Jullien R (1985) Structural readjustment effects in cluster–cluster aggregation. J Phys France 46:1543–1552

    Article  Google Scholar 

  • Moore WR, Brown AM (1959) Viscosity-temperature relationships for dilute solutions of cellulose derivatives II. Intrinsic viscosities of ethyl cellulose. J Colloid Sci 14:343–353

    Article  CAS  Google Scholar 

  • Morris ER, Cutler AN, Ross-Murphy SB, Rees DA (1981) Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohyd Polym 1:5–21

    Article  CAS  Google Scholar 

  • Nelson ML, O’Conner RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, 11, I11 and of amorphous cellulose. J Appl Polym Sci 8:1311–1324

    Article  CAS  Google Scholar 

  • O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Overney RM, Buenviaje C, Luginbuhl R, Dinelli F (2000) Glass and structural transitions measured at polymer surfaces on the nanoscale. J Therm Anal Cal 59:205–225

    Article  CAS  Google Scholar 

  • Perez S, Samain D (2010) Structure and engineering of celluloses. Adv Cacbohyd Chem Biochem 64:26–116

    Google Scholar 

  • Rekhi GS, Jambhekar SS (1995) Ethylcellulose: a polymer review. Drud Dev Ind Pharm 21:61–77

    Article  CAS  Google Scholar 

  • Repka MA et al (2007) Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev Ind Pharm 33:1043–1057

    Article  CAS  Google Scholar 

  • Roos Y, Karel M (1991) Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J Food Sci 56:1676–1681

    Article  CAS  Google Scholar 

  • Roudaut G, Simatos D, Champion D, Contreras-Lopez E, Meste ML (2004) Molecular mobility around the glass transition temperature: a mini review. Innov Food Sci Emerg Tech 5:127–134

    Article  CAS  Google Scholar 

  • Rowe RC, Kotaras AD, White EFT (1984) An evaluation of the plasticizing efficiency of the dialkyl phthalates in ethyl cellulose films using the torsional braid pendulum. Int J Pharm 22:57–62

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  • Sakellariou P, Rowe RC, White EFT (1985) The thermo mechanical properties and glass transition temperatures of some cellulose derivatives used in film coating. Int J Pharm 27:267–277

    Article  CAS  Google Scholar 

  • Sandford PA, Cottrell IW, Pettitt DJ (1984) Microbial polysaccharides: new products and their commercial applications. Pure Appl Chem 56:879–892

    Article  CAS  Google Scholar 

  • Schaefer DW, Hurd AJ (1990) Growth and structure of combustion aerosols fumed silica. Aerosol Sci Tech 12:876–890

    Article  CAS  Google Scholar 

  • Sinha SK, Freltoft T, Kjems J (1984) Observation of power law correlations in silica-particle aggregates by small-angle neutron scattering. In: Family F, Landau DP (eds) Kinetics of aggregation and gelation. North-Holland Physics Publishing, Amsterdam, pp 87–90

    Chapter  Google Scholar 

  • Skillas G et al (2002) Relation of the fractal structure of organic pigments to their performance. J Appl Phys 91:6120–6124

    Article  CAS  Google Scholar 

  • Soares JP, Santos JE, Chierice GO, Cavalheiro ETG (2004) Thermal behavior of alginic acid and its sodium salt. Eclet Quim 29:57–63

    Article  CAS  Google Scholar 

  • Tarvainen M et al (2003) Enhanced film-forming properties for ethyl cellulose and starch acetate using n-alkenyl succinic anhydrides as novel plasticizers. Eur J Pharm Sci 19:363–371

    Article  CAS  Google Scholar 

  • Torres FE, Russel WB, Schowalter WR (1991) Simulations of coagulation in viscous flows. J Colloid Interface Sci 145:51–73

    Article  CAS  Google Scholar 

  • Wada M (2002) Lateral thermal expansion of cellulose I and I III Polymorphs. J Polym Sci B: Polym Phys 40:1095–1102

    Article  CAS  Google Scholar 

  • Wada M, Hori R, Kim U-J, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose Ib and its high-temperature phase. Polym Deg Stab 95:1330–1334

    Article  CAS  Google Scholar 

  • Ward TC (1981) Molecular weight and molecular weight distributions in synthetic polymers. J Chem Edu 58:867–879

    Article  CAS  Google Scholar 

  • Witten TA, Sander LM (1983) Diffusion-limited aggregation. Phys Rev B 27:5686–5697

  • Yu DG, Yang XL, Huang WD, Liu J, Wang YG, Xu H (2006) Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci 96:2446–2456

    Article  Google Scholar 

  • Zetzl AK, Marangoni AG, Barbut S (2012) Mechanical properties of ethylcellulose oleo gels and their potential for saturated fat reduction in frankfurters. Food Funct 3:327–337

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohyd Polym 76:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by the Ontario Ministry of Agriculture and Food (OMAF) and the Natural Sciences and Engineering Research Council of Canada (NSERC). We acknowledge the technical assistance of Fernanda Peyronel for setting up experiments and data analysis. The author wish to thank Dr. Jan Ilavsky from the APS sector 15ID-D USAXS/SAXS facility for his help conducting both SAXS and USAXS experiments. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Marangoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich-Pinhas, M., Barbut, S. & Marangoni, A.G. Physical structure and thermal behavior of ethylcellulose. Cellulose 21, 3243–3255 (2014). https://doi.org/10.1007/s10570-014-0377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0377-1

Keywords

Navigation