Skip to main content
Log in

A vectorial approach to determine frozen orbital conditions

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Taking into consideration a probe moving in an elliptical orbit around a celestial body, the possibility of determining conditions which lead to constant values on average of all the orbit elements has been investigated here, considering the influence of the planetary oblateness and the long-term effects deriving from the attraction of several perturbing bodies. To this end, three equations describing the variation of orbit eccentricity, apsidal line and angular momentum unit vector have been first retrieved, starting from a vectorial expression of the Lagrange planetary equations and considering for the third-body perturbation the gravity-gradient approximation, and then exploited to demonstrate the feasibility of achieving the above-mentioned goal. The study has led to the determination of two families of solutions at constant mean orbit elements, both characterised by a co-planarity condition between the eccentricity vector, the angular momentum and a vector resulting from the combination of the orbital poles of the perturbing bodies. As a practical case, the problem of a probe orbiting the Moon has been faced, taking into account the temporal evolution of the perturbing poles of the Sun and Earth, and frozen solutions at argument of pericentre 0\(^{\circ }\) or 180\(^{\circ }\) have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abad, A., Elipe, A., Tresaco, E.: Analytical model to find frozen orbits for a lunar orbiter. J. Guid. Control Dyn. 32(3), 888–898 (2009)

    Article  ADS  Google Scholar 

  • Allan, R.R., Ward, G.N.: Planetary equations in terms of vectorial elements. Math. Proc. Camb. 59, 669–677 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Allan, R.R.: The critical inclination problem: a simple treatment. Celest. Mech. Dyn. Astron. 2(1), 121–122 (1970)

    Article  Google Scholar 

  • Allan, R.R., Cook, G.E.: The long period motion of the plane of a distant circular orbit. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 280(1380), 97–109 (1964)

    Article  ADS  MATH  Google Scholar 

  • Aorpimai, M., Palmer, P.L.: Analysis of frozen conditions and optimal frozen orbit insertion. J. Guid. Control Dyn. 26(5), 786–793 (2003)

    Article  ADS  Google Scholar 

  • Breiter, S., Fouchard, M., Ratajczak, R.: Stationary orbits of comets perturbed by Galactic tides. Mon. Not. R. Astron. Soc. 383(1), 200–208 (2008)

    Article  ADS  Google Scholar 

  • Broucke, R.A.: Long-term third-body effects via double averaging. J. Guid. Control Dyn. 26(1), 27–32 (2003)

    Article  ADS  Google Scholar 

  • Circi, C., Condoleo, E., Ortore, E.: Moon’s influence on the plane variation of circular orbits. Adv. Space Res. 57(1), 153–165 (2016)

    Article  ADS  Google Scholar 

  • Coffey, S.L., Deprit, A., Miller, B.R.: The critical inclination in artificial satellite theory. Celest. Mech. Dyn. Astron. 39(4), 365–406 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Coffey, S.L., Deprit, A., Deprit, E.: Frozen orbits for satellites close to an Earth-like planet. Celest. Mech. Dyn. Astron. 59(1), 37–72 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Colombo, G.: Cassini’s second and third laws. Astron. J. 71(9), 891–896 (1966)

    Article  ADS  Google Scholar 

  • Condoleo, E., Cinelli, M., Ortore, E., Circi, C.: Frozen orbits with equatorial perturbing bodies: the case of Ganymede, Callisto, and Titan. J. Guid. Control Dyn. 39(10), 2264–2272 (2016)

    Article  ADS  Google Scholar 

  • Elipe, A., Lara, M.: Frozen orbits about the Moon. J. Guid. Control Dyn. 26(2), 238–243 (2003)

    Article  ADS  Google Scholar 

  • Folta, D., Quinn, D.: Lunar frozen orbits. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, CO, AIAA Paper 2006–6749 (2006)

  • Friesen, L.J., Jackson, A.A., Zook, H.A., Kessler, D.J.: Analysis of orbital perturbations acting on objects in orbits near geosynchronous Earth orbit. J. Geophys. Res. 97(E3), 3845–3863 (1992)

    Article  ADS  Google Scholar 

  • Friesen, L.J., Kessler, D.J., Zook, H.A.: Reduced debris hazard resulting from a stable inclined geosynchronous orbit. Adv. Space Res. 13(8), 231–241 (1993)

    Article  ADS  Google Scholar 

  • Garfinkel, B.: On the motion of a satellite in the vicinity of the critical inclination. Astron. J. 65(10), 624–627 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  • Garfinkel, B.: The global solution of the problem of the critical inclination. Celest. Mech. Dyn. Astron. 8(1), 25–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Jupp, A.H.: The critical inclination problem-30 years of process. Celest. Mech. Dyn. Astron. 43(1–4), 127–138 (1988)

    MATH  Google Scholar 

  • Konopliv, A.S., Park, R.S., Yuan, D., et al.: The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL primary mission. J. Geophys. Res. Planet 118, 1–20 (2013)

    Article  Google Scholar 

  • Kudielka, V.W.: Equilibria bifurcations of satellite orbits. In: Dvorak, R., Henrard, J. (eds.) The dynamical behaviour of our planetary system, pp. 243–255. Kluwer, Dordrecht (1997)

    Chapter  Google Scholar 

  • Lara, M., Deprit, A., Elipe, A.: Numerical continuation of families of frozen orbits in the zonal problem of artificial satellite theory. Celest. Mech. Dyn. Astron. 62(2), 167–181 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Liu, X., Baoyin, H., Ma, X.: Extension of the critical inclination. Astrophys. Space Sci. 334, 115–124 (2011a)

    Article  ADS  MATH  Google Scholar 

  • Liu, X., Baoyin, H., Ma, X.: Analytical investigations of quasi-circular frozen orbits in the Martian gravity field. Celest. Mech. Dyn. Astron. 109(3), 303–320 (2011b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rosengren, A.J., Scheeres, D.J., McMahon, J.W.: The classical Laplace plane as a stable disposal orbit for geostationary satellites. Adv. Space Res. 53(8), 1219–1228 (2014)

    Article  ADS  Google Scholar 

  • Rosengren, A.J., Scheeres, D.J.: On the Milankovitch orbital elements for perturbed Keplerian motion. Celest. Mech. Dyn. Astron. 118(3), 197–220 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Saedeleer, B.De, Henrard, J.: The combined effect of \(J\)2 and \(C\)22 on the critical inclination of a Lunar orbiter. Adv. Space Res. 37(1), 80–87 (2006)

    Article  ADS  Google Scholar 

  • Tremaine, S., Touma, J., Namouni, F.: Satellite dynamics on the Laplace surface. Astron. J. 137(3), 3706–3717 (2009)

    Article  ADS  Google Scholar 

  • Ulivieri, C., Circi, C., Ortore, E., Bunkheila, F., Todino, F.: Frozen orbital plane solutions for satellites in nearly circular orbit. J. Guid. Control Dyn. 36(4), 935–945 (2013)

    Article  ADS  Google Scholar 

  • Vashkov’yak, M.A.: Stability of circular satellite orbits for combined action of perturbations from an external body and from the noncentrality of the planetary gravitational field. Cosm. Res. 12, 757–769 (1974)

    ADS  Google Scholar 

  • Vashkov’yak, M.A., Vashkov’yak, S.N., Emel’yanov, N.V.: On the evolution of satellite orbits under the action of the planet’s oblateness and attraction by its massive satellites and the Sun. Solar Syst. Res. 49(4), 247–262 (2015)

    Article  ADS  Google Scholar 

  • Ward, W.R.: Tidal friction and generalized Cassini’s laws in the Solar System. Astron. J. 80(1), 64–68 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Circi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Circi, C., Condoleo, E. & Ortore, E. A vectorial approach to determine frozen orbital conditions. Celest Mech Dyn Astr 128, 361–382 (2017). https://doi.org/10.1007/s10569-017-9757-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-017-9757-9

Keywords

Navigation