Skip to main content
Log in

The Effects of Surface Modification of ATP on the Performance of CeO2–WO3/TiO2 Catalyst for the Selective Catalytic Reduction of NOx with NH3

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A series of CeO2–WO3/20%ATP-TiO2 catalysts were synthesized, of which attapulgite (ATP) was modified by different methods. Notably, after ATP was dissociated and acidified, the catalyst synthesized by the impregnation method exhibited satisfactory performance for selective catalytic reduction (SCR) NOx with NH3. In more detail, the NO conversion could reach to 88% at 240 °C and maintain above 93% in the temperature range of 280–400 °C. Subsequently, the NO conversion of the best catalyst could keep above 80% after introducing H2O and SO2, so this catalyst also had strong tolerance to H2O and SO2 performance. Besides, the results of XRD, XPS, TEM characterizations suggested that the high dispersion of active species cerium and tungsten on the surface of ATP, which played an important role in improving the SCR performance of the catalyst. In short, the surface dissociation and surface acidification of a small amount of ATP carrier can improve the catalyst catalytic performance, so it will have a broad application prospect in SCR reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Meng D, Zhan W, Guo Y, Guo Y, Wang L, Lu G (2015) ACS Catal 5:5973–5983

    Article  CAS  Google Scholar 

  2. Zhang D, Zhang L, Shi L, Fang C, Li H, Gao R, Huang L, Zhang J (2013) Nanoscale 5:1127–1136

    Article  CAS  PubMed  Google Scholar 

  3. Yang Q, Wang Y, Zhao C, Liu Z, Gustafson WI Jr, Shao M (2011) Environ Sci Technol 45:6404–6410

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Li X, Zhao Q, Hao C, Wang S, Tade M (2014) ACS Catal 4:2426–2436

    Article  CAS  Google Scholar 

  5. Li X, Li J, Peng Y, Li X, Li K, Hao J (2016) J Phys Chem C 120:18005–18014

    Article  CAS  Google Scholar 

  6. Li X, Li J, Peng Y, Zhang T, Liu S, Hao J (2015) Catal Sci Technol 5:4556–4564

    Article  CAS  Google Scholar 

  7. Huang X, Zhang G, Lu G, Tang Z (2018) Catal Surv Asia 22:1–19

    Article  CAS  Google Scholar 

  8. Shan W, Geng Y, Chen X, Huang N, Liu F, Yang S (2016) Catal Sci Technol 6:1195–1200

    Article  CAS  Google Scholar 

  9. Chen L, Weng D, Si Z, Wu X (2012) Prog Nat Sci 22:265–272

    Article  Google Scholar 

  10. Zhang G, Han W, Zhao H, Zong L, Tang Z (2018) Appl Catal B 226:117–126

    Article  CAS  Google Scholar 

  11. Ding S, Liu F, Shi X, He H (2016) Appl Catal B 180:766–774

    Article  CAS  Google Scholar 

  12. Wang X, Li X, Zhao Q, Sun W, Tade M, Liu S (2016) Chem Eng J 288:216–222

    Article  CAS  Google Scholar 

  13. Jiang Y, Bao C, Liu Q, Liang G, Lu M, Ma S (2018) Catal Commun 103:96–100

    Article  CAS  Google Scholar 

  14. Huang X, Zhang H, He M (2017) Gene 637:1–8

    Article  CAS  PubMed  Google Scholar 

  15. Shan W, Liu F, Yu Y, He H (2014) Chin J Catal 35:1251–1259

    Article  CAS  Google Scholar 

  16. Qi G, Yang R, Chang R (2004) Appl Catal B 51:93–106

    Article  CAS  Google Scholar 

  17. Shen B, Ma H, He C, Zhang X (2014) Fuel Process Technol 119:121–129

    Article  CAS  Google Scholar 

  18. Shan W, Liu F, He H, Shi X, Zhang C (2012) Appl Catal B 100:115–116

    Google Scholar 

  19. Jiang Y, Xing Z, Wang X, Huang S, Wang X, Liu Q (2015) Fuel 151:124–151

    Article  CAS  Google Scholar 

  20. Gao X, Jiang Y, Fu Y, Zhong Y, Luo Z, Cen K (2010) Catal Commun 11:465–469

    Article  CAS  Google Scholar 

  21. Xu W, He H, Yu Y (2009) J Phys Chem C 113:4426–4432

    Article  CAS  Google Scholar 

  22. Huang H, Shan W, Yang S, Zhang J (2014) Catal Sci Technol 4:3611–3614

    Article  CAS  Google Scholar 

  23. Zhu L, Zhong Z, Yang H, Wang C (2017) Environ Technol 38:1285–1294

    Article  CAS  PubMed  Google Scholar 

  24. Zhou X, Huang X, Xie A, Luo S, Yao C, Li X, Zuo S (2017) Chem Eng J 326:1074–1085

    Article  CAS  Google Scholar 

  25. Lu Y, Dong W, Wang W, Wang Q, Hui A, Wang A (2019) Appl Clay Sci 167:50–59

    Article  CAS  Google Scholar 

  26. Li X, Yin Y, Yao C, Zuo S, Lu X, Luo S, Ni C (2016) Particuology 26:66–72

    Article  CAS  Google Scholar 

  27. Xie A, Zhou X, Huang X, Ji L, Zhou W, Luo S, Yao C (2017) J Ind Eng Chem 49:230–241

    Article  CAS  Google Scholar 

  28. Wang F, Wang W, Zhu Y, Wang A (2017) J Rare Earth 35:697–708

    Article  CAS  Google Scholar 

  29. Huang X, Xie A, Wu J, Xu L, Luo S, Xia J, Yao C, Li X (2018) J Mater Res 33:3559–3569

    Article  CAS  Google Scholar 

  30. Xie W, Zhang G, Mu B, Tang Z, Zhang J (2020) Appl Clay Sci 192:1–10

    Article  CAS  Google Scholar 

  31. Xie A, Tao Y, Jin X, Gu P, Huang X, Zhou X, Luo S, Yao C, Li X (2019) New J Chem 43:2490–2500

    Article  CAS  Google Scholar 

  32. Chen C, Cao Y, Liu S, Chen J, Jia W (2019) Appl Surf Sci 480:537–547

    Article  CAS  Google Scholar 

  33. Zong L, Zhang J, Lu G, Tang Z (2018) Catal Surv Asia 22:105–117

    Article  Google Scholar 

  34. Peng Y, Li J, Chen L, Chen J, Han J, Zhang H, Han W (2012) Environ Sci Technol 46:2864–2869

    Article  CAS  PubMed  Google Scholar 

  35. Djerad S, Tifouti L, Crocoll M, Weisweiler W (2004) J Mol Catal A 208:257–265

    Article  CAS  Google Scholar 

  36. Zhang G, Han W, Dong F, Zong L, Lu G, Tang Z (2016) Rsc Adv 6:76556–76567

    Article  CAS  Google Scholar 

  37. Zong L, Zhang G, Zhao J, Dong F, Zhang J, Tang Z (2018) Chem Eng J 343:500–511

    Article  CAS  Google Scholar 

  38. Li X, Si Y, Ji L, Gong P (2017) Ecol Model 360:70–79

    Article  Google Scholar 

  39. Huang X, Zhang G, Dong F, Tang Z (2019) J Ind Eng Chem 69:66–76

    Article  CAS  Google Scholar 

  40. Dupin JC, Gonbeau D, Vinatier P, Levasseur A (2000) Phys Chem Chem Phys 2:1319–1324

    Article  CAS  Google Scholar 

  41. Shi Q, Li Y, Zhou Y, Miao S, Ta N, Zhan E, Liu J, Shen W (2015) J Mater Chem A 3:14409–14415

    Article  CAS  Google Scholar 

  42. Du X, Gao X, Fu Y, Gao F, Luo Z, Cen K (2012) J Colloid Interface Sci 368:406–412

    Article  CAS  PubMed  Google Scholar 

  43. Camposeco R, Castillo S, Mugica V, Mejia-Centeno I, Marin J (2014) Chem Eng J 242:313–320

    Article  CAS  Google Scholar 

  44. Zhang Z, Wang W, Wang A (2015) J Environ Sci China 33:106–115

    Article  CAS  PubMed  Google Scholar 

  45. Chen L, Li R, Li Z, Yuan F, Niu X, Zhu Y (2017) Catal Sci Technol 7:3243–3257

    Article  CAS  Google Scholar 

  46. Chen Z, Peng Y, Chen J (2020) Environ Sci Technol 54:14465–14473

    Article  CAS  PubMed  Google Scholar 

  47. Mamede AS, Payen E, Grange P, Poncelet G, Ion A, Alifanti M, Parvulescu VI (2004) J Catal 223:1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51808529), the Major Project of Inner Mongolia Science and Technology (2019ZD018), the Foundation of Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CMAR-2019-3), the Science and Technology Program of Chengguan district, lanzhou city (2019JSCX0042), and the DNL Cooperation Fund, CAS (DNL201906).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhicheng Tang or Jiyi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 729 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Zhang, G., Mu, B. et al. The Effects of Surface Modification of ATP on the Performance of CeO2–WO3/TiO2 Catalyst for the Selective Catalytic Reduction of NOx with NH3. Catal Surv Asia 25, 301–311 (2021). https://doi.org/10.1007/s10563-021-09330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09330-y

Keywords

Navigation