Skip to main content
Log in

Promotional Effect of Molybdenum Additives on Catalytic Performance of CeO2/Al2O3 for Selective Catalytic Reduction of NOx

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of CeO2/Al2O3 and CeMoxOy/Al2O3 catalysts were prepared by an extrusion method for selective catalytic reduction of NOx, and were characterized by techniques of XRD, XPS, N2-BET, H2-TPR and NH3-TPD. Promotional effects of molybdenum additives on catalytic performances and tolerances toward SO2 and H2O poisoning of the catalysts were comparatively studied. Results showed that the CeO2/Al2O3 catalyst with the Ce/Al molar ratio of 1:5 exhibited the best catalytic performance; molybdenum additives greatly improved catalytic performance of the CeMoxOy/Al2O3 catalysts, and the catalyst with the Al/Ce/Mo molar ratio of 5:1:0.15 calcinated at 550 °C exhibited the highest catalytic activity above 95 % in active temperature window of 250–430 °C under the gas hourly space velocity (GHSV) of 7200 h−1. Moreover, molybdenum additives broadened the range of the active temperature, and significantly enhanced the anti-sulfur poisoning ability. Analysis showed that the promotional effects of molybdenum additives were attributed to the improvement of specific surface area, increment of surface acidity and the enhancement of the redox properties.

Graphical Abstract

The molybdenum additives significantly increase the catalytic performance of CeO2/Al2O3 for selective catalytic reduction of NOx and greatly broaden the range of the active temperature. The reasons mainly due to molybdenum additives improve the specific surface area, increase the proportion of Ce3+/(Ce4++Ce3+) and Oα/(Oα + Oβ) on the surface, and enhance the amount of the Lewis acid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lietti L, Nova I, Forzatti P (2000) Top Catal 11:111

    Article  Google Scholar 

  2. Busca G, Liettib L, Ramis G, Berti F (1998) Appl Catal B 18:1

    Article  CAS  Google Scholar 

  3. Yamazoe S, Masutani Y, Teramura K, Hitomi Y, Shishido T, Tanaka T (2008) Appl Catal B 83:123

    Article  CAS  Google Scholar 

  4. Mok YS, Nam IS (2002) Chem Eng J 85:87

    Article  CAS  Google Scholar 

  5. Brandenberger S, Kroecher O, Tissler A, Althoff R (2008) Catal Rev Sci Eng 50:492

    Article  CAS  Google Scholar 

  6. Shen YS, Zhu SM, Qiu T, Shen SB (2009) Catal Commun 11:20

    Article  CAS  Google Scholar 

  7. Chen L, Li JH, Ge MF, Ma L, Chang HZ (2011) Chin J Catal 32:836

    Article  CAS  Google Scholar 

  8. Yan SH, Wang XP, Wang WC, Liu ZQ, Niu JH (2012) J Nat Gas Chem 21:332

    Article  CAS  Google Scholar 

  9. Tonetto GM, Damiani DE (2003) J Mol Catal A 202:289

    Article  CAS  Google Scholar 

  10. Deng W, Dai QG, Lao YJ, Shi BB, Wang XY (2016) Appl Catal B 181:848

    Article  CAS  Google Scholar 

  11. Chen L, Li JH, Ge MF, Zhu RH (2010) Catal Today 153:77

    Article  CAS  Google Scholar 

  12. Zhu SM, Shen YS, Li WF, Liu YY (2006) J Rare Earth 24:234

    Article  Google Scholar 

  13. Li ZG, Li JH, Liu SX, Ren XN, Ma J, Su WK, Peng Y (2015) Catal Today 258:11

    Article  CAS  Google Scholar 

  14. Michalow-Mauke KA, Lu Y, Ferri D, Graule T, Kowalski K, Elsener M, Kroecher O (2015) Chimia 69:220

    Article  CAS  Google Scholar 

  15. Krivoruchenko DS, Telegina NS, Bokarev DA, Stakheev AY (2015) Kinet Catal 56:741

    Article  CAS  Google Scholar 

  16. Qu L, Li CT, Zeng GM, Zhang MY, Fu MF, Ma JF, Zhan FM, Luo DQ (2014) Chem Eng J 242:76

    Article  CAS  Google Scholar 

  17. Lin QC, Hao JM, Li JH, Ma ZF, Lin WM (2007) Catal Today 126:351

    Article  CAS  Google Scholar 

  18. Yan SH, Wang XP, Wang WC (2011) J Nat Gas Chem 21:332

    Article  Google Scholar 

  19. Spitznagel GW, Huttenhofer K, Beer JK (1993) Abstr Pap Am Chem Soc 205:44

    Google Scholar 

  20. Spitznagel GW, Huttenhofer K, Beer JK (1994) in: Armor JN (Ed), Acs Symposium Series, pp. 172

  21. Djerad S, Crocoll M, Kureti S, Tifouti L, Weisweiler W (2006) Catal Today 113:208

    Article  CAS  Google Scholar 

  22. Djerad S, Tifouti L, Crocoll M, Weisweiler W (2004) J Mol Catal A 208:257

    Article  CAS  Google Scholar 

  23. Lietti L, Nova I, Ramis G, Forzatti P, Bregani F (1999) J Catal 187:419

    Article  CAS  Google Scholar 

  24. Wang XP, Yu SS, Yang HL, Zhang SX (2007) Appl Catal B 71:246

    Article  CAS  Google Scholar 

  25. Liu ZM, Zhang SX, Li JH, Ma LL (2014) Appl Catal B 144:90

    Article  CAS  Google Scholar 

  26. Shen YS, Ma YF, Zhu SM (2012) Catal Sci Technol 2:589

    Article  CAS  Google Scholar 

  27. Shan WP, Liu FD, He H, Shi XY, Zhang CB (2011) Chem Commun 47:8046

    Article  CAS  Google Scholar 

  28. Ding SP, Liu FD, Shi XY, Liu K, Lian ZH, Xie LJ (2015) He H 7:9497

    CAS  Google Scholar 

  29. Li Z, Huang W, Xie KC (2002) Chin J Catal 23:535

    CAS  Google Scholar 

  30. Letichevsky S, Tellez CA, Avillez RR (2005) Appl Catal B 58:203

    Article  CAS  Google Scholar 

  31. Boningari T, Koirala R, Smirniotis PG (2012) Appl Catal B 127:255

    Article  CAS  Google Scholar 

  32. Larachi FA, Pierre JM, Adnot A, Bernis A (2002) Appl Surf Sci 195:236

    Article  CAS  Google Scholar 

  33. Smirnov MY, Graham GW (2001) Catal Lett 72:39

    Article  CAS  Google Scholar 

  34. Boningari T, Pappas DK, Ettireddy PR, Kotrba A, Smirniotis PG (2015) Ind Eng Chem Res 54:2261

    Article  CAS  Google Scholar 

  35. Kwon DW, Nam KB, Hong SC (2015) Appl Catal A 497:160

    Article  CAS  Google Scholar 

  36. Jlg F (1990) Catal Today 8:153

    Article  Google Scholar 

  37. Wu ZB, Jin RB, Liu Y, Wang HQ (2008) Catal Commun 9:2217

    Article  CAS  Google Scholar 

  38. Boningari T, Ettireddy PR, Somogyvari A, Liu Y, Vorontsov A, McDonald CA (2015) Smirniotis PG 325:145

    CAS  Google Scholar 

  39. Kapteijn F, Singoredjo L, Andreini A, Moulijn JA (1994) Appl Catal B 3:173

    Article  CAS  Google Scholar 

  40. Shen YS, Su Y, Ma YF (2015) RSC Adv 5:7597

    Article  CAS  Google Scholar 

  41. Tanabe K, Sumiyoshi T, Shibata K, Kiyoura T, Kitagawa J (1974) Bull Chem Soc Jpn 47:1064

    Article  CAS  Google Scholar 

  42. Peng Y, Qu RY, Zhang XY, Li HJ (2013) Chem Commun 49:6215

    Article  CAS  Google Scholar 

  43. Gu TT, Liu Y, Weng XL, Wang HQ, Wu ZB (2010) Catal Commun 12:310

    Article  CAS  Google Scholar 

  44. Zhang L, Li LL, Cao Y, Yao XJ, Ge CY, Gao F, Deng Y, Tang CJ, Dong L (2015) Appl Catal B 165:589

    Article  CAS  Google Scholar 

  45. Forzatti P (2001) Appl Catal A 222:221

    Article  CAS  Google Scholar 

  46. Xu WQ, He H, Yu YB (2009) J Phys Chem C 113:4426

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51272105), Jiangsu Provincial Science and Technology Supporting Program (BE2013718), Research Subject of Environmental Protection Department of Jiangsu Province of China (2013006), Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuesong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Shen, Y., Zhu, S. et al. Promotional Effect of Molybdenum Additives on Catalytic Performance of CeO2/Al2O3 for Selective Catalytic Reduction of NOx . Catal Lett 146, 1221–1230 (2016). https://doi.org/10.1007/s10562-016-1739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1739-0

Keywords

Navigation