Skip to main content
Log in

Low Temperature Oxidation of Benzene Over Pd/Co3O4 Catalysts in the Electric Field

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic system coupled with electric field was utilized to realize oxidation of benzene over Pd/Co3O4 catalysts at low temperature. For catalysts with 1% Pd loading, the temperature for complete conversion of benzene was substantially reduced from the 358 °C to 293 °C with electric field. The characterization results demonstrated that release of lattice oxygen in the Co3O4 spinel was enhanced with electric field, therefore reinforced the formation of PdOx from the oxidation of Pd0. DRIFT results showed that active sites [PdOx] was formed from the reaction of PdOx with O species from catalyst bulk through MvK mechanism under electric field while dissociation of gaseous oxygen that occur at relatively high temperature is necessary for the formation of active sites in conventional catalytic system. In addition, the inhibition of the produced water molecules on the catalyst activity was eliminated due to the promoted “H2O sink” effect of Co3O4 support with electric field. Based on the results and discussion, pathways of benzene oxidation over Pd/Co3O4 catalyst under electric field are revealed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liotta LF (2010) Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B Environ 100(3–4):403–412

    CAS  Google Scholar 

  2. Huang H, Xu Y, Feng Q, Leung DY (2015) Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol 5(5):2649–2669

    CAS  Google Scholar 

  3. He C, Cheng J, Zhang X, Douthwaite M, Hao Z (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119(7):4471–4568

    CAS  PubMed  Google Scholar 

  4. Petrova P, Tabakova T, Munteanu G, Zanella R, Tsvetkov M, Ilieva L (2013) Gold catalysts on Co-doped ceria for complete benzene oxidation: Relationship between reducibility and catalytic activity. Catal Commun 36:84–88

    CAS  Google Scholar 

  5. Tang W, Deng Y, Chen Y (2017) Promoting effect of acid treatment on Pd-Ni/SBA-15 catalyst for complete oxidation of gaseous benzene. Catal Commun 89:86–90

    CAS  Google Scholar 

  6. Kim HS, Kim TW, Koh HL, Lee SH, Min BR (2005) Complete benzene oxidation over Pt-Pd bimetal catalyst supported on γ-alumina: influence of Pt-Pd ratio on the catalytic activity. Appl Catal A 280(2):125–131

    CAS  Google Scholar 

  7. He C, Li J, Li P, Cheng J, Hao Z, Xu Z-P (2010) Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation. Appl Catal B 96(3):466–475

    CAS  Google Scholar 

  8. Zuo S, Du Y, Liu F, Han D, Qi C (2013) Influence of ceria promoter on shell-powder-supported Pd catalyst for the complete oxidation of benzene. Appl Catal A 451:65–70

    CAS  Google Scholar 

  9. Heintze M, Pietruszka B (2004) Plasma catalytic conversion of methane into syngas: the combined effect of discharge activation and catalysis. Catal Today 89(1):21–25

    CAS  Google Scholar 

  10. Pietruszka B, Heintze M (2004) Methane conversion at low temperature: the combined application of catalysis and non-equilibrium plasma. Catal Today 90(1):151–158

    CAS  Google Scholar 

  11. Vayenas CG, Bebelis S, Pliangos C, Brosda S, Tsiplakides D (2003) Electrochem Activ Catal 39:182506–182513

    Google Scholar 

  12. Ladas S, Kennou S, Bebelis S, Vayenas C (1993) Origin of non-Faradaic electrochemical modification of catalytic activity. J Phys Chem C 97(35):95–103

    Google Scholar 

  13. Oshima K, Shinagawa T, Haraguchi M, Sekine Y (2013) Low temperature hydrogen production by catalytic steam reforming of methane in an electric field. Int J Hydrogen Energy 38(7):3003–3011

    CAS  Google Scholar 

  14. Oshima K, Shinagawa T, Nogami Y, Manabe R, Ogo S, Sekine Y (2014) Low temperature catalytic reverse water gas shift reaction assisted by an electric field. Catal Today 232(Supplement C):27–32

    CAS  Google Scholar 

  15. Ogo S, Nakatsubo H, Iwasaki K, Sato A, Murakami K, Yabe T, Atsushi I, Nakai H, Sekine Y (2018) Electron-hopping brings lattice strain and high catalytic activity in the low-temperature oxidative coupling of methane in an electric field. J Phys Chem C 122(4):2089–2096

    CAS  Google Scholar 

  16. Okada S, Manabe R, Inagaki R, Ogo S, Sekine Y (2018) Methane dissociative adsorption in catalytic steam reforming of methane over Pd/CeO2 in an electric field. Catal Today 307:272–276

    CAS  Google Scholar 

  17. Kazumasa O, Shinagawa T, Sekine Y (2013) Methane conversion assisted by plasma or electric field. J Jpn Petrol Inst 56(1):11–21

    Google Scholar 

  18. Sugiura K, Ogo S, Iwasaki K, Yabe T, Sekine Y (2016) Low-temperature catalytic oxidative coupling of methane in an electric field over a Ce–W–O catalyst system. Sci Rep 6:25154

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sekine Y, Haraguchi M, Tomioka M, Matsukata M, Kikuchi E (2010) Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field. J Phys Chem A 114(11):3824–3833

    CAS  PubMed  Google Scholar 

  20. Tanaka K, Sekine Y, Oshima K, Tanaka Y, Matsukata M, Kikuchi E (2012) Catalytic oxidative coupling of methane assisted by electric power over a semiconductor catalyst. Chem Lett 41(4):351–353

    CAS  Google Scholar 

  21. Sekine Y, Tomioka M, Matsukata M, Kikuchi E (2009) Catalytic degradation of ethanol in an electric field. Catal Today 146(1):183–187

    CAS  Google Scholar 

  22. Zuo S, Qi C (2011) Modification of Co/Al2O3 with Pd and Ce and their effects on benzene oxidation. Catal Commun 15(1):74–77

    CAS  Google Scholar 

  23. Ma W-P, Ding Y-J, Lin L-W (2004) Fischer−tropsch synthesis over activated-carbon-supported cobalt catalysts: effect of co loading and promoters on catalyst performance. Ind Eng Chem 43(10):2391–2398

    CAS  Google Scholar 

  24. Liu K, Li K, Xu D, Lin H, Guan B, Chen T, Huang Z (2018) Catalytic combustion of lean methane assisted by electric field over Pd/Co3O4 catalysts at low temperature. J Shanghai Jiaotong Univ Sci 23(1):8–17

    Google Scholar 

  25. Guan B, Lin H, Zhu L, Huang Z (2011) Selective catalytic reduction of NO­­x with NH3 over Mn, Ce substitution Ti0.9V0.1O2−δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method. J Phys Chem C 115(26):12850–12863

    CAS  Google Scholar 

  26. He H, Dai HX, Wong KW, Au CT (2003) RE0.6Zr0.4−xYxO2 (RE = Ce, Pr; x = 0, 0.05) solid solutions: an investigation on defective structure, oxygen mobility, oxygen storage capacity, and redox properties. Appl Catal A 251(1):61–74

    CAS  Google Scholar 

  27. Liu J, Zhao Z, Wang J, Xu C, Duan A, Jiang G, Yang Q (2008) The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustion. Appl Catal B 84(1):185–195

    CAS  Google Scholar 

  28. Narayanappa M, Dasireddy V, Friedrich H (2012) Catalytic oxidation of n-octane over cobalt substituted ceria (Ce0.90Co0.10O2−δ) catalysts. Appl Catal A 447–448(3):135–143

    Google Scholar 

  29. Tang Y, Ma L-J, Dou J, Andolina C, Li Y, Ma H, House S, Zhang X, Yang CJ, Tao F (2018) Transition of surface phase of cobalt oxide during CO oxidation. Phys Chem Chem Phys 20(9):6440–6449

    CAS  PubMed  Google Scholar 

  30. Giraudon JM, Elhachimi A, Leclercq G (2008) Catalytic oxidation of chlorobenzene over Pd/perovskites. Appl Catal B 84(1):251–261

    CAS  Google Scholar 

  31. Gélin P, Primet M (2002) Complete oxidation of methane at low temperature over noble metal based catalysts: a review. Appl Catal B 39(1):1–37

    Google Scholar 

  32. Salomonsson P, Johansson S, Kasemo B (1995) Methane oxidation over PdO x: on the mechanism for the hysteresis in activity and oxygen content. Catal Lett 33(1–2):1–13

    CAS  Google Scholar 

  33. Ribeiro FH, Chow M, Dallabetta RA (1994) Kinetics of the complete oxidation of methane over supported palladium catalysts. J Catal 146(2):537–544

    CAS  Google Scholar 

  34. Ercolino G, Stelmachowski P, Grzybek G, Kotarba A, Specchia S (2017) Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane. Appl Catal B 206:712–725

    CAS  Google Scholar 

  35. Zafeiratos S, Dintzer T, Teschner D, Blume R, Hävecker M, Knop-Gericke A, Schlögl R (2010) Methanol oxidation over model cobalt catalysts: Influence of the cobalt oxidation state on the reactivity. J Catal 269(269):2

    Google Scholar 

  36. Narayanappa M, Dasireddy V, Friedrich H (2012) Catalytic oxidation of n-octane over cobalt substituted ceria (Ce0.90Co0.10O2−δ)catalysts. Appl Catal A 447–448(3):135–143

    Google Scholar 

  37. Hossain MM (2012) Co–Pd/γ-Al2O3 catalyst for heavy oil upgrading: desorption kinetics, reducibility and catalytic activity. Can J Chem Eng 90(4):946–955

    CAS  Google Scholar 

  38. Jodłowski P, Jędrzejczyk R, Chlebda D, Gierada M, Łojewska J (2017) In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface. J Catal 350:1–12

    Google Scholar 

  39. Cao C, Bourane A, Schlup J, Hohn K (2008) In situ IR investigation of activation and catalytic ignition of methane over Rh/Al2O3 catalysts. Appl Catal A 344(1):78–87

    CAS  Google Scholar 

  40. Van Devener B, Anderson S, Shimizu T, Wang H, Nabity J, Engel J, Yu J, Wickham D, Williams S (1950) In Situ Generation of Pd/PdO nanoparticle methane combustion catalyst: correlation of particle surface chemistry with ignition. J Phys Chem C 80033(80138):20632–20639

    Google Scholar 

  41. Chlebda DK, Jodłowski PJ, Jędrzejczyk RJ, Łojewska J (2018) Generalised two-dimensional correlation analysis of the Co, Ce, and Pd mixed oxide catalytic systems for methane combustion using in situ infrared spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 192:202–210

    CAS  Google Scholar 

  42. Li Z, Xu G, Hoflund GB (2003) In situ IR studies on the mechanism of methane oxidation over Pd/Al2O3 and Pd/Co3O4 catalysts. Fuel Process Technol 84(1):1–11

    CAS  Google Scholar 

  43. Stefanov P, Todorova S, Naydenov A, Tzaneva B, Kolev H, Atanasova G, Stoyanova D, Karakirova Y, Aleksieva K (2015) On the development of active and stable Pd–Co/γ-Al2O3 catalyst for complete oxidation of methane. Chem Eng J 266:329–338

    CAS  Google Scholar 

  44. Zhang F, Hakanoglu C, Hinojosa JA, Weaver JF (2013) Inhibition of methane adsorption on PdO(101) by water and molecular oxygen. Surf Sci 617:249–255

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from National Natural Science Foundation of China (Grant No. 51676127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Li, K., Zhao, X. et al. Low Temperature Oxidation of Benzene Over Pd/Co3O4 Catalysts in the Electric Field. Catal Lett 151, 67–77 (2021). https://doi.org/10.1007/s10562-020-03230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03230-y

Keywords

Navigation