Skip to main content
Log in

The Effect of TiO2 on the Catalytic Activity of a PtRu/C Catalyst for Methanol Oxidation

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In this work, the effect of the addition of different amounts of TiO2 nanotubes to a PtRu catalyst supported on Vulcan XC-72R carbon black for methanol oxidation was studied. Two approaches were used for the catalyst preparation. In the first case, Pt and Ru metal ions were impregnated onto the support (C-TiO2) and subsequently reduced with NaBH4. In the second case, the metal ions were first reduced and then impregnated, in order to obtain a catalyst with metal loading of 30 % of PtRu (50:50 at.% composition of Pt/Ru) and varying concentrations of TiO2 (5–15 wt%); the actual composition was determined by inductively coupled plasma optical emission spectrometry (ICP-OES) analysis. The electrochemical properties were studied via cyclic voltammetry and chronoamperometry in 0.5 M H2SO4 solution. X-ray diffraction analyses indicated the formation of PtRu alloy with different degrees of alloying. The CO-stripping voltammetry studies showed that both the onset potential and the peak potential are dependent on the catalyst composition; the PtRu/C-TiO2(10) exhibited a relatively higher CO oxidation current compared to those exhibited by the other catalysts. Both the linear sweep voltammetry and the chronoamperometric results also demonstrated that the PtRu/C-TiO2(10) catalyst exhibited a higher methanol oxidation current and a lower poisoning rate among the investigated catalysts with various TiO2 nanotube contents (i.e., 0, 5, and 15 % TiO2). The prepared catalysts revealed essentially the same catalytic performance independently of the procedure used for their preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.P. Hogarth, T.R. Ralph, Platin. Met. Rev. 46, 146 (2002)

    CAS  Google Scholar 

  2. A.S. Aricò, S. Srinivasan, V. Antonucci, Fuel Cells 1, 133 (2001)

    Article  Google Scholar 

  3. B. Gurau, R. Viswanathan, R. Liu, T.J. Lafrenz, K.L. Ley, E.S. Smotkin, E. Reddington, A. Sapienza, B.C. Chan, T.E. Mallouk, S. Sarangapani, J. Phys. Chem. B 102, 9997 (1998)

    Article  CAS  Google Scholar 

  4. W.J. Zhou, B. Zhou, W.Z. Li, Z.H. Zhou, S.Q. Song, G.Q. Sun, Q. Xin, J. Power Sources 126, 16 (2004)

    Article  CAS  Google Scholar 

  5. J.-M. Léger, S. Rousseau, C. Coutanceau, F. Hahn, C. Lamy, Electrochim. Acta 50, 5118 (2005)

    Article  Google Scholar 

  6. S.K. Kamarudina, F. Achmada, W.R.W. Daud, S. Douvartzidesc, M. Goulac, P. Tsiakarasc, Int. J. Hydrog. Energy 34, 6902 (2009)

    Article  Google Scholar 

  7. M. Carmo, M. Brandalise, A.O. Neto, E.V. Spinacé, A.D. Taylor, M. Linardi, J.G. Rocha Poco, Int. J. Hydrog. Energy 36, 14659 (2011)

    Article  CAS  Google Scholar 

  8. E. Antolini, J. Power Sources 170, 1 (2007)

    Article  CAS  Google Scholar 

  9. W.T. Napporn, H. Laborde, J.-M. lager *, C. Lamy, J. Electroanal. Chem. 404, 153 (1996)

    Article  Google Scholar 

  10. A.O. Neto, R.R. Dias, M.M. Tusi, M. Linardi, E.V. Spinacé, J. Power Sources 166, 87 (2007)

    Article  Google Scholar 

  11. C. Roth, A.J. Papworth, I. Hussain, R.J. Nichols, D.J. Schiffrin, J. Electroanal. Chem. 581, 79 (2005)

    Article  CAS  Google Scholar 

  12. A. Murthy, A. Manthiram, Electrochem. Commun. 13, 310 (2011)

    Article  CAS  Google Scholar 

  13. S. Wasmus, A. Küver, J. Electroanal. Chem. 461, 14 (1999)

    Article  CAS  Google Scholar 

  14. S.J. Yoo, T.-Y. Jeon, Y.-H. Cho, K.-S. Lee, Y.-E. Sung, Electrochim. Acta 55, 7939 (2010)

    Article  CAS  Google Scholar 

  15. O.V. Cherstiouk, P.A. Simonov, E.R. Savinova, Electrochim. Acta 48, 3851 (2003)

    Article  CAS  Google Scholar 

  16. K.-W. Park, Y.-E. Sung, S. Han, Y. Yun, T. Hyeon, J. Phys. Chem. B 108, 939 (2004)

    Article  CAS  Google Scholar 

  17. E. Antolini, Appl. Catal. B Environ. 88, 1 (2009)

    Article  CAS  Google Scholar 

  18. J. Guo, G. Sun, Q. Wang, G. Wang, Z. Zhou, S. Tang, L. Jiang, B. Zhou, Q. Xin, Carbon 44, 152 (2006)

    Article  CAS  Google Scholar 

  19. J. Prabhuram, T.S. Zhao, Z.X. Liang, R. Chen, Electrochim. Acta 52, 2649 (2007)

    Article  CAS  Google Scholar 

  20. N.-Y. Hsu, C.-C. Chien, K.-T. Jeng, Appl. Catal. B Environ. 84, 196 (2008)

    Article  CAS  Google Scholar 

  21. H. Zhang, X. Xu, P. Gu, C. Li, P. Wu, C. Cai, Electrochim. Acta 56, 7064 (2011)

    Article  CAS  Google Scholar 

  22. L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Carbon 48, 781 (2010)

    Article  CAS  Google Scholar 

  23. M. Hepel, I. Kumarihamya, C.J. Zhong, Electrochem. Commun. 8, 1439 (2006)

    Article  CAS  Google Scholar 

  24. H.L. Pang, X.H. Zhang, X.X. Zhong, B. Liu, X.G. Wei, Y.F. Kuang, J.H. Chen, J. Colloid InterfaceSci. 319, 193 (2008)

    Article  CAS  Google Scholar 

  25. F. Peng, C. Zhou, H. Wang, H. Yu, J. Liang, J. Yang, Catal. Commun. 10, 533 (2009)

    Article  CAS  Google Scholar 

  26. B. Rajesha, V. Karthika, S. Karthikeyana, K.R. Thampib, J.-M. Bonardc, B. Viswanathana, Fuel 81, 2177 (2002)

    Article  Google Scholar 

  27. P. Justin, G.R. Rao, Int. J. Hydrog. Energy 36, 5875 (2011)

    Article  CAS  Google Scholar 

  28. H.J. Kim, D.Y. Kim, H. Han, Y.G. Shul, J. Power Sources 159, 484 (2006)

    Article  CAS  Google Scholar 

  29. S. Sharma, B.G. Pollet, J. Power Sources 208, 96 (2012)

    Article  CAS  Google Scholar 

  30. J. Liua, C. Zhonga, X. Dua, Y. Wua, P. Xua, J. Liub, W. Hua, Electrochim. Acta 100, 164 (2013)

    Article  Google Scholar 

  31. K.-S. Lee, I.-S. Park, Y.-H. Cho, D.-S. Jung, N. Jung, H.-Y. Park, Y.-E. Sung, J. Catal. 258, 143 (2008)

    Article  CAS  Google Scholar 

  32. M. Wang, D.J. Guo, H.L. Li, J. Solid State Chem. 178, 1996 (2005)

    Article  CAS  Google Scholar 

  33. R.E. Fuentes, B.L. García, J.W. Weidner, J. Electrochem. Soc. 158, B461 (2011)

    Article  CAS  Google Scholar 

  34. G. Selvarani, S. Maheswari, P. Sridhar, S. Pitchumani, A.K. Shuklab, J. Electrochem. Soc. 156, B1354 (2009)

    Article  CAS  Google Scholar 

  35. B.E. Hayden, D.V. Malevich, D. Pletcher, Electrochem. Commun. 3, 395 (2001)

    Article  CAS  Google Scholar 

  36. J.M. Macak, P.J. Barczuk, H. Tsuchiya, M.Z. Nowakowska, A. Ghicov, M. Chojak, S. Bauer, S. Virtanen, P.J. Kulesza, P. Schmuki, Electrochem. Commun. 7, 1417 (2005)

    Article  CAS  Google Scholar 

  37. T. Saida, N. Ogiwara, Y. Takasu, W. Sugimoto, J. Phys. Chem. C 114, 13390 (2010)

    Article  CAS  Google Scholar 

  38. H. Song, P. Xiao, X. Qiu, W. Zhu, J. Power Sources 195, 1610 (2010)

    Article  CAS  Google Scholar 

  39. Z. Wang, G. Chen, D. Xia, L. Zhang, J. Alloys Compd. 450, 148 (2008)

    Article  CAS  Google Scholar 

  40. K. Hirakawa, M. Inoue, T. Abe, Electrochim. Acta 55, 5874 (2010)

    Article  CAS  Google Scholar 

  41. Q.-Z. Jiang, X. Wu, M. Shen, Z.-F. Ma, X.-Y. Zhu, Catal. Lett. 124, 434 (2008)

    Article  CAS  Google Scholar 

  42. L. Shen, Q.-Z. Jiang, T. Gan, M. Shen, F.J. Rodriguez Varela, A.L. Ocampo, Z.-F. Ma, J. New Mater. Electrochem. Syst. 13, 205 (2010)

    CAS  Google Scholar 

  43. E. Antolini, E.R. Gonzalez, Solid State Ionics 180, 746 (2009)

    Article  CAS  Google Scholar 

  44. Y. Ito, T. Takeuchi, T. Tsujiguchi, M.A. Abdelkareem, N. Nakagawa, J. Power Sources 242, 280 (2013)

    Article  CAS  Google Scholar 

  45. K. Drew, G. Girishkumar, K. Vinodgopal, P.V. Kamat, J. Phys. Chem. B Lett. 109, 11851 (2005)

    Article  CAS  Google Scholar 

  46. D.V. Arulmani, J.I. Eastcott, S.G. Mavilla, E.B. Easton, J. Power Sources 247, 890 (2014)

    Article  CAS  Google Scholar 

  47. D.-H. Lim, W.-D. Lee, D.-H. Choi, D.-R. Park, H. Lee, J. Power Sources 185, 159 (2008)

    Article  CAS  Google Scholar 

  48. X. Wu, Q.-Z. Jiang, Z.-F. Ma, M. Fu, W.-F. Shangguan, Solid State Commun. 136, 513 (2005)

    Article  CAS  Google Scholar 

  49. V. Radmilovic, H.A. Gasteiger, P.N. Ross Jr., J. Catal. 154, 98 (1995)

    Article  CAS  Google Scholar 

  50. J.W. Guo, T.S. Zhao, J. Prabhuram, R. Chen, C.W. Wong, Electrochim. Acta 51, 754 (2005)

    Article  CAS  Google Scholar 

  51. L. Ren, Y. Xing, Electrochim. Acta 53, 5563 (2008)

    Article  CAS  Google Scholar 

  52. A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.-M. Leger, C. Lamy, J. Electroanal. Chem. 444, 41 (1998)

    Article  CAS  Google Scholar 

  53. C. Coutanceau, S. Brimaud, C. Lamy, J.-M. Léger, L. Dubau, S. Rousseau, F. Vigier, Electrochim. Acta 53, 6865 (2008)

    Article  CAS  Google Scholar 

  54. J. Guo, G. Sun, S. Sun, S. Yan, W. Yang, J. Qi, Y. Yan, Q. Xin, J. Power Sources 168, 299 (2007)

    Article  CAS  Google Scholar 

  55. C. Kim, H.-H. Kwon, I.K. Song, Y.-E. Sung, W.S. Chung, H.-I. Lee, J. Power Sources 171, 404 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work has been supported by the grant from CONACYT (project 101755) and PAPIIT (IN119710). Authors wish to thank Nadia Munguía Acevedo for the ICP-OES determinations and technical services of UNAM (Cecilia Salcedo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lilia Ocampo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocampo, A.L., Jiang, QZ., Ma, ZF. et al. The Effect of TiO2 on the Catalytic Activity of a PtRu/C Catalyst for Methanol Oxidation. Electrocatalysis 5, 387–395 (2014). https://doi.org/10.1007/s12678-014-0203-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0203-4

Keywords

Navigation