Skip to main content

Advertisement

Log in

Limited value of digital subtraction angiography in the evaluation of cell-based therapy in patients with limb ischemia

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cell-based therapy has been proposed as a novel strategy for patients with severe peripheral arterial disease by stimulating vascular growth. In clinical studies of this therapy, the emphasis has been on demonstrating recovery of clinical parameters, rather than on evaluation of blood flow recovery. Angiography is still the gold standard for the assessment of lower leg arteries. Therefore, we studied the usefulness of angiography in the evaluation of cell-based therapy. Sixteen patients with critical leg ischemia (ischemic rest pain or ulcers), or persistent (>12 months) profound disabling claudication were unilaterally treated with autologous bone marrow-derived mononuclear cells. Pre- and 6 months post-treatment digital subtraction angiographies (DSA) were assessed and compared in a blinded fashion twice by a panel of seven vascular surgeons and interventional radiologists. Inter- and intraobserver variability on qualitative (poor/moderate/rich) and semi-quantitative (increase/no difference/decrease) assessment of collateral circulation were evaluated. Agreement was expressed inter- and intraclass correlation coefficients (CC). Inter- and intraobserver agreement was moderate for the qualitative grading of collateral extent (CC = 0.46 and 0.60, respectively). Agreement was moderate (inter-CC = 0.60) to good (intra-CC = 0.73) for comparing pre- and post-treatment DSA. Clinical response was based on limb salvage, pain-free walking distance, ankle-brachial pressure index and pain scores. No difference was observed in the extent of collateral circulation between pre- and post treatement DSA after separate analysis of clinical responding and non-responding patients (P = 0.92). DSA is not a suited modality for the evaluation of therapeutic angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators et al (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435

    Article  PubMed  Google Scholar 

  2. Esato K, Hamano K, Li TS, Furutani A, Seyama A, Takenaka H et al (2002) Neovascularization induced by autologous bone marrow cell implantation in peripheral arterial disease. Cell Transpl 11:747–752

    Google Scholar 

  3. Higashi Y, Kimura M, Hara K, Noma K, Jitsuiki D, Nakagawa K et al (2004) Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation 109:1215–1218

    Article  PubMed  Google Scholar 

  4. Saigawa T, Kato K, Ozawa T, Toba K, Makiyama Y, Minagawa S et al (2004) Clinical application of bone marrow implantation in patients with arteriosclerosis obliterans, and the association between efficacy and the number of implanted bone marrow cells. Circ J 68:1189–1193

    Article  PubMed  Google Scholar 

  5. Miyamoto K, Nishigami K, Nagaya N, Akutsu K, Chiku M, Kamei M et al (2004) Therapeutic angiogenesis by autologous bone marrow cell implantation for refractory chronic peripheral arterial disease using assessment of neovascularization by 99mTc-tetrofosmin (TF) perfusion scintigraphy. Cell Transpl 13:429–437

    Article  Google Scholar 

  6. Durdu S, Akar AR, Arat M, Sancak T, Eren NT, Ozyurda U (2006) Autologous bone marrow mononuclear cell implantation for patients with Rutherford grade II–III thromboangiitis obliterans. J Vasc Surg 44:732–739

    Article  PubMed  Google Scholar 

  7. Kawamura A, Horie T, Tsuda I, Abe Y, Yamada M, Egawa H et al (2006) Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs 9:226–233

    Article  PubMed  Google Scholar 

  8. Yang X, Wu Y, Wang H, Xu Y, Xu B, Lu X (2006) Transplantation of mobilized peripheral blood mononuclear cells for peripheral arterial occlusive disease of the lower extremity. J Geriatr Cardiol 3:181–183

    Google Scholar 

  9. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  10. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J et al (2001) Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103:897–903

    Article  CAS  PubMed  Google Scholar 

  11. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A et al (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94:230–238

    Article  CAS  PubMed  Google Scholar 

  12. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    Article  CAS  PubMed  Google Scholar 

  13. van Tongeren RB, Hamming JF, Fibbe WE, Van Weel V, Frerichs SJ, Stiggelbout AM et al (2008) Intramuscular or combined intramuscular/intra-arterial administration of bone marrow mononuclear cells: a clinical trial in patients with advanced limb ischemia. J Cardiovasc Surg 49:51–58

    Google Scholar 

  14. Huang PP, Li S, Han M, Xiao Z, Yang R, Han ZC (2005) Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 28:2155–2160

    Article  PubMed  Google Scholar 

  15. Huang PP, Yang XF, Li SZ, Wen JC, Zhang Y, Han ZC (2007) Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost 98:1335–1342

    CAS  PubMed  Google Scholar 

  16. Maclure M, Willett WC (1987) Misinterpretation and misuse of the kappa statistic. Am J Epidemiol 126:161–169

    CAS  PubMed  Google Scholar 

  17. Fleiss JL, Levin B, Paik MC (2003) Statistical methods for rates and proportions, 3rd edn. Wiley, New York

    Google Scholar 

  18. Euser AM, le Cessie S, Finken MJ, Wit JM, Dekker FW, Dutch POPS-19 Collaborative Study Group (2007) Reliability studies can be designed more efficiently by using variance components estimates from different sources. J Clin Epidemiol 60:1010–1014

    Article  PubMed  Google Scholar 

  19. Altman DG (1991) Practical statistics for medical research. Chapman Hall, London

    Google Scholar 

  20. Schlinting H (1960) Boundary layer theory. McGraw Hill, New York

    Google Scholar 

  21. Stewart KJ, Hiatt WR, Regensteiner JG, Hirsch AT (2002) Exercise training for claudication. N Engl J Med 347:1941–1951

    Article  PubMed  Google Scholar 

  22. van Weel V, van Tongeren RB, van Hinsbergh VW, van Bockel JH, Quax PH (2008) Vascular growth in ischemic limbs: a review of mechanisms and possible therapeutic stimulation. Ann Vasc Surg 22:582–597

    Article  PubMed  Google Scholar 

  23. Bruins Slot H, Strijbosch L, Greep JM (1981) Interobserver variability in single-plane aortography. Surgery 90:497–503

    Google Scholar 

  24. Koelemay MJ, Legemate DA, Reekers JA, Koedam NA, Balm R, Jacobs MJ (2001) Interobserver variation in interpretation of arteriography and management of severe lower leg arterial disease. Eur J Vasc Endovasc Surg 21:417–422

    Article  CAS  PubMed  Google Scholar 

  25. Lindner JR, Womack L, Barret EJ, Weltman J, Price W, Harthun NL et al (2008) Limb stress-rest perfusion imaging with contrast ultrasound for the assessment of peripheral arterial disease severity. JACC Cardiovasc Imaging 1:343–350

    Article  PubMed  Google Scholar 

  26. Rissanen TT, Korpisalo P, Karvinen H, Liimatainen T, Laidinen S, Gröhn OH et al (2008) High-resolution ultrasound perfusion imaging of therapeutic angiogenesis. JACC Cardiovasc Imging 1:83–91

    Article  Google Scholar 

  27. Rentrop KP, Cohen M, Blanke H, Phillips RA (1985) Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol 5:587–592

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Stephan J.G.C. Frerichs, Jan-Willem H.P. Lardenoye, Carla S.P. van Rijswijk and Greg P. van Schie for assessing the angiograms and Johannes H.N. Lindeman for his comment on the manuscript. Funding sources: none; Disclosures: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. van Tongeren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Tongeren, R.B., Hamming, J.F., le Cessie, S. et al. Limited value of digital subtraction angiography in the evaluation of cell-based therapy in patients with limb ischemia. Int J Cardiovasc Imaging 26, 19–25 (2010). https://doi.org/10.1007/s10554-009-9507-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-009-9507-5

Keywords

Navigation