Skip to main content

Angiogenesis: Perspectives from Therapeutic Angiogenesis

  • Chapter
  • First Online:
Stem Cell Therapy for Vascular Diseases

Abstract

Peripheral arterial disease (PAD) is a major complication of systemic atherosclerosis and is a major public health threat worldwide. For patients with PAD, there are limited options for therapy, and no medications have been shown to slow progression of the disease. For patients with severe disease, open surgical procedures and endovascular techniques may relieve symptoms and prevent amputation; however, in a substantial proportion of patients, surgical and endovascular revascularization are not an option based on a patients’ anatomy and/or comorbid diseases. “Stem cell therapy” covers a range of investigational approaches across various cells and delivery methods. Overall, stem cell therapy has been shown to be safe, and multiple small studies have shown benefit in pain relief, improved functional status, and decreased major amputations. Unfortunately, the results of larger trials of stem cell therapy have been largely disappointing, and many of the early studies may well have been limited by both selection bias and lack of investigator blinding. In this chapter, the embryological basis for therapy with stem cells will be reviewed, as well as major studies that set the stage for stem cell therapy as an option or those that provide important findings. The current status of stem cell therapy and future directions for this area of research will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirsch AT, Duval S. The global pandemic of peripheral artery disease. Lancet. 2013;382(9901):1312–4.

    Article  PubMed  Google Scholar 

  2. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116(9):1509–26.

    Article  CAS  PubMed  Google Scholar 

  3. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69(11):1465–508.

    Article  PubMed  Google Scholar 

  4. Price J, Mowbray P, Lee A, Rumley A, Lowe G, Fowkes F. Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease; Edinburgh artery study: Edinburgh artery study. Eur Heart J. 1999;20(5):344–53.

    Article  CAS  PubMed  Google Scholar 

  5. Vartanian SM, Conte MS. Surgical intervention for peripheral arterial disease. Circ Res. 2015;116(9):1614–28.

    Article  CAS  PubMed  Google Scholar 

  6. Dormandy J, Heeck L, Vig S. Semin Vasc Surg. 1999;12(2):142–7. PMID: 10777241.

    Google Scholar 

  7. Fridh EB, Andersson M, Thuresson M, Sigvant B, Kragsterman B, Johansson S, et al. Amputation rates, mortality, and pre-operative comorbidities in patients revascularised for intermittent claudication or critical limb ischaemia: a population based study. Eur J Vasc Endovasc Surg. 2017;54(4):480–6.

    Article  Google Scholar 

  8. Risau W. Differentiation of endothelium. FASEB J. 1995;9(10):926–33.

    Article  CAS  PubMed  Google Scholar 

  9. Raval Z, Losordo DW. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ Res. 2013;112(9):1288–302.

    Article  CAS  PubMed  Google Scholar 

  10. Eichmann A, Yuan L, Moyon D, Lenoble F, Pardanaud L, Breant C. Vascular development: from precursor cells to branched arterial and venous networks. Int J Dev Biol. 2003;49(2–3):259–67.

    Google Scholar 

  11. Ceafalan LC, Popescu BO, Hinescu ME.Biomed Res Int. 2014;2014:957014. https://doi.org/10.1155/2014/957014. Epub 2014 Mar 23.

  12. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. JcCellcPhysiol. 1998;176(1):57–66.

    CAS  Google Scholar 

  13. Fuss IJ, Kanof ME, Smith PD, Zola H. Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr Protoc Immunol. 2009;85(1):7.1–7.1. 8.

    Article  Google Scholar 

  14. Oswald J, Boxberger S, Jørgensen B, Feldmann S, Ehninger G, Bornhäuser M, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–84.

    Article  PubMed  Google Scholar 

  15. Kaigler D, Krebsbach PH, Polverini PJ, Mooney DJ. Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng. 2003;9(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  16. Wu L, Leijten J, van Blitterswijk CA, Karperien M. Fibroblast growth factor-1 is a mesenchymal stromal cell-secreted factor stimulating proliferation of osteoarthritic chondrocytes in co-culture. Stem Cells Dev. 2013;22(17):2356–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ. The life and fate of mesenchymal stem cells. Front Immunol. 2014;5:148.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–5.

    Article  CAS  PubMed  Google Scholar 

  19. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti-and pro-angiogenic therapies. Genes Cancer. 2011;2(12):1097–105.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Forster R, Liew A, Bhattacharya V, Shaw J, Stansby G. Gene therapy for peripheral arterial disease. Cochrane Database Syst Rev. 2018;2018(10):CD012058.

    PubMed Central  Google Scholar 

  21. Rajagopalan S, Mohler ER III, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation. 2003;108(16):1933–8.

    Article  CAS  PubMed  Google Scholar 

  22. Eswarakumar V, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  23. Murakami M, Nguyen LT, Hatanaka K, Schachterle W, Chen P-Y, Zhuang ZW, et al. FGF-dependent regulation of VEGF receptor 2 expression in mice. J Clin Invest. 2011;121(7):2668–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen P-Y, Simons M, Friesel R. FRS2 via fibroblast growth factor receptor 1 is required for platelet-derived growth factor receptor β-mediated regulation of vascular smooth muscle marker gene expression. J Biol Chem. 2009;284(23):15980–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lederman RJ, Mendelsohn FO, Anderson RD, Saucedo JF, Tenaglia AN, Hermiller JB, et al. Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet. 2002;359(9323):2053–8.

    Article  CAS  PubMed  Google Scholar 

  26. Comerota AJ, Throm RC, Miller KA, Henry T, Chronos N, Laird J, et al. Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg. 2002;35(5):930–6.

    Article  PubMed  Google Scholar 

  27. Nikol S, Baumgartner I, Van Belle E, Diehm C, Visoná A, Capogrossi MC, et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther. 2008;16(5):972–8.

    Article  CAS  PubMed  Google Scholar 

  28. Fowkes FGR, Price JF. Gene therapy for critical limb ischaemia: the TAMARIS trial. Lancet. 2011;377(9781):1894–6.

    Article  PubMed  Google Scholar 

  29. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta N, Nizet V. Stabilization of hypoxia-inducible factor-1 alpha augments the therapeutic capacity of bone marrow-derived mesenchymal stem cells in experimental pneumonia. Front Med. 2018;5:131.

    Article  Google Scholar 

  31. Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013;27(1):41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Creager MA, Olin JW, Belch JJ, Moneta GL, Henry TD, Rajagopalan S, et al. Effect of hypoxia-inducible factor-1α gene therapy on walking performance in patients with intermittent claudication. Circulation. 2011;124(16):1765–73.

    Article  CAS  PubMed  Google Scholar 

  33. Das R, Jahr H, van Osch GJ, Farrell E. The role of hypoxia in bone marrow–derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Eng Part B Rev. 2009;16(2):159–68.

    Article  Google Scholar 

  34. Morimoto A, Okamura K, Hamanaka R, Sato Y, Shima N, Higashio K, et al. Hepatocyte growth factor modulates migration and proliferation of human microvascular endothelial cells in culture. Biochem Biophys Res Commun. 1991;179(2):1042–9.

    Article  CAS  PubMed  Google Scholar 

  35. Grant DS, Kleinman HK, Goldberg ID, Bhargava MM, Nickoloff BJ, Kinsella JL, et al. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci. 1993;90(5):1937–41.

    Article  CAS  PubMed  Google Scholar 

  36. Nita I, Hostettler K, Tamo L, Medová M, Bombaci G, Zhong J, et al. Hepatocyte growth factor secreted by bone marrow stem cell reduce ER stress and improves repair in alveolar epithelial II cells. Sci Rep. 2017;7:41901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc Japan Acad Ser B. 2010;86(6):588–610.

    Article  CAS  Google Scholar 

  38. Morishita R, Aoki M, Hashiya N, Makino H, Yamasaki K, Azuma J, et al. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease. Hypertension. 2004;44(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  39. Shigematsu H, Yasuda K, Iwai T, Sasajima T, Ishimaru S, Ohashi Y, et al. Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 2010;17(9):1152.

    Article  CAS  PubMed  Google Scholar 

  40. Powell RJ, Goodney P, Mendelsohn FO, Moen EK, Annex BH, Investigators H-T. Safety and efficacy of patient specific intramuscular injection of HGF plasmid gene therapy on limb perfusion and wound healing in patients with ischemic lower extremity ulceration: results of the HGF-0205 trial. J Vasc Surg. 2010;52(6):1525–30.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–6.

    Article  CAS  PubMed  Google Scholar 

  42. Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells. 2014;32(6):1380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gehling UM, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000;95(10):3106–12.

    Article  CAS  PubMed  Google Scholar 

  44. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952–8.

    Article  CAS  PubMed  Google Scholar 

  45. Garlanda C, Dejana E. Heterogeneity of endothelial cells: specific markers. Arterioscler Thromb Vasc Biol. 1997;17(7):1193–202.

    Article  CAS  PubMed  Google Scholar 

  46. Masek LC, Sweetenham JW. Isolation and culture of endothelial cells from human bone marrow. Br J Haematol. 1994;88(4):855–65.

    Article  CAS  PubMed  Google Scholar 

  47. Shi Q, Rafii S, Hong-De Wu M, Wijelath ES, Yu C, Ishida A, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92(2):362–7.

    Article  CAS  PubMed  Google Scholar 

  48. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360(9331):427–35.

    Article  PubMed  Google Scholar 

  49. Higashi Y, Kimura M, Hara K, Noma K, Jitsuiki D, Nakagawa K, et al. Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation. 2004;109(10):1215–8.

    Article  PubMed  Google Scholar 

  50. Forconi S, Jageneau A, Guerrini M, Pecchi S, Cappelli R. Strain gauge plethysmography in the study of circulation of the limbs. Angiology. 1979;30(7):487–97.

    Article  CAS  PubMed  Google Scholar 

  51. Cobellis G, Silvestroni A, Lillo S, Sica G, Botti C, Maione C, et al. Long-term effects of repeated autologous transplantation of bone marrow cells in patients affected by peripheral arterial disease. Bone Marrow Transplant. 2008;42(10):667.

    Article  CAS  PubMed  Google Scholar 

  52. Hardman RL, Jazaeri O, Yi J, Smith M, Gupta R, editors. Overview of classification systems in peripheral artery disease. Seminars in interventional radiology. Thieme Medical Publishers; Semin Intervent Radiol. 2014;31:378–88.

    Google Scholar 

  53. Ruiz-Salmeron R, De La Cuesta-Diaz A, Constantino-Bermejo M, Pérez-Camacho I, Marcos-Sánchez F, Hmadcha A, et al. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011;20(10):1629–39.

    Article  PubMed  Google Scholar 

  54. Franz RW, Parks A, Shah KJ, Hankins T, Hartman JF, Wright ML. Use of autologous bone marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. J Vasc Surg. 2009;50(6):1378–90.

    Article  PubMed  Google Scholar 

  55. Franz RW, Shah KJ, Johnson JD, Pin RH, Parks AM, Hankins T, et al. Short-to mid-term results using autologous bone-marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. Vasc Endovasc Surg. 2011;45(5):398–406.

    Article  Google Scholar 

  56. Bartsch T, Brehm M, Zeus T, Kögler G, Wernet P, Strauer BE. Transplantation of autologous mononuclear bone marrow stem cells in patients with peripheral arterial disease (the TAM-PAD study). Clin Res Cardiol. 2007;96(12):891–9.

    Article  CAS  PubMed  Google Scholar 

  57. Smadja DM, Duong-van-Huyen J-P, Dal Cortivo L, Blanchard A, Bruneval P, Emmerich J, et al. Early endothelial progenitor cells in bone marrow are a biomarker of cell therapy success in patients with critical limb ischemia. Cytotherapy. 2012;14(2):232–9.

    Article  CAS  PubMed  Google Scholar 

  58. Hur J, Yoon C-H, Kim H-S, Choi J-H, Kang H-J, Hwang K-K, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol. 2004;24(2):288–93.

    Article  CAS  PubMed  Google Scholar 

  59. Van Tongeren R, Hamming J, Fibbe W, Van Weel V, Frerichs S, Stiggelbout A, et al. Intramuscular or combined intramuscular/intra-arterial administration of bone marrow mononuclear cells: a clinical trial in patients with advanced limb ischemia. J Cardiovasc Surg. 2008;49(1):51.

    Google Scholar 

  60. Brant-Zawadzki M, Gould R, Norman D, Newton T, Lane B. Digital subtraction cerebral angiography by intraarterial injection: comparison with conventional angiography. Am J Roentgenol. 1983;140(2):347–53.

    Article  CAS  Google Scholar 

  61. Meijer FJ, Schuijf JD, de Vries J, Boogaarts HD, van der Woude W-J, Prokop M. Ultra-high-resolution subtraction CT angiography in the follow-up of treated intracranial aneurysms. Insights Imaging. 2019;10(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Powell RJ, Marston WA, Berceli SA, Guzman R, Henry TD, Longcore AT, et al. Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther. 2012;20(6):1280–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Iafrati MD, Hallett JW, Geils G, Pearl G, Lumsden A, Peden E, et al. Early results and lessons learned from a multicenter, randomized, double-blind trial of bone marrow aspirate concentrate in critical limb ischemia. J Vasc Surg. 2011;54(6):1650–8.

    Article  PubMed  Google Scholar 

  64. James KE, Bloch DA, Lee KK, Kraemer HC, Fuller RK. An index for assessing blindness in a multi-centre clinical trial: disulfiram for alcohol cessation—a VA cooperative study. Stat Med. 1996;15(13):1421–34.

    Article  CAS  PubMed  Google Scholar 

  65. Walter DH, Krankenberg H, Balzer JO, Kalka C, Baumgartner I, Schlüter M, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011;4(1):26–37.

    Article  PubMed  Google Scholar 

  66. Teraa M, Sprengers RW, Schutgens RE, Slaper-Cortenbach IC, Van Der Graaf Y, Algra A, et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled rejuvenating endothelial progenitor cells via transcutaneous intra-arterial supplementation (JUVENTAS) trial. Circulation. 2015;131(10):851–60.

    Article  CAS  PubMed  Google Scholar 

  67. Lenk K, Adams V, Lurz P, Erbs S, Linke A, Gielen S, et al. Therapeutical potential of blood-derived progenitor cells in patients with peripheral arterial occlusive disease and critical limb ischaemia. Eur Heart J. 2005;26(18):1903–9.

    Article  PubMed  Google Scholar 

  68. Lara-Hernandez R, Lozano-Vilardell P, Blanes P, Torreguitart-Mirada N, Galmes A, Besalduch J. Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Ann Vasc Surg. 2010;24(2):287–94.

    Article  CAS  PubMed  Google Scholar 

  69. Huang PP, Yang XF, Li SZ, Wen JC, Zhang Y, Han ZC. Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost. 2007;98(12):1335–42.

    Article  CAS  PubMed  Google Scholar 

  70. Losordo DW, Kibbe MR, Mendelsohn F, Marston W, Driver VR, Sharafuddin M, et al. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv. 2012;5(6):821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matoba S, Tatsumi T, Murohara T, Imaizumi T, Katsuda Y, Ito M, et al. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (therapeutic angiogenesis by cell transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J. 2008;156(5):1010–8.

    Article  PubMed  Google Scholar 

  72. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2017;69(11):e71–e126.

    Article  PubMed  Google Scholar 

  73. Aboyans V, Ricco J-B, Bartelink M-LE, Björck M, Brodmann M, Cohnert T, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS) document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries endorsed by: the European stroke organization (ESO) the task force for the diagnosis and treatment of peripheral arterial diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2017;39(9):763–816.

    Article  Google Scholar 

  74. Imanishi T, Moriwaki C, Hano T, Nishio I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens. 2005;23(10):1831–7.

    Article  CAS  PubMed  Google Scholar 

  75. Michaud SÉ, Dussault S, Haddad P, Groleau J, Rivard A. Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis. 2006;187(2):423–32.

    Article  CAS  PubMed  Google Scholar 

  76. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004;53(1):195–9.

    Article  CAS  PubMed  Google Scholar 

  77. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH, Zhu JH. Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci. 2004;107(3):273–80.

    Article  CAS  Google Scholar 

  78. Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, et al. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood. 2009;114(3):723–32.

    Article  CAS  PubMed  Google Scholar 

  79. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res. 2004;94(2):230–8.

    Article  CAS  PubMed  Google Scholar 

  80. Medina RJ, Barber CL, Sabatier F, Dignat-George F, Melero-Martin JM, Khosrotehrani K, et al. Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Transl Med. 2017;6(5):1316–20.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104(9):2752–60.

    Article  CAS  PubMed  Google Scholar 

  82. Lin R-Z, Moreno-Luna R, Li D, Jaminet S-C, Greene AK, Melero-Martin JM. Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proc Natl Acad Sci. 2014;111(28):10137–42.

    Article  CAS  PubMed  Google Scholar 

  83. Gao W, Chen D, Liu G, Ran X. Autologous stem cell therapy for peripheral arterial disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther. 2019;10(1):140.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bura A, Planat-Benard V, Bourin P, Silvestre J-S, Gross F, Grolleau J-L, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16(2):245–57.

    Article  CAS  PubMed  Google Scholar 

  85. Subherwal S, Patel MR, Chiswell K, Tidemann-Miller BA, Jones WS, Conte MS, et al. Clinical trials in peripheral vascular disease: pipeline and trial designs: an evaluation of the ClinicalTrials.gov database. Circulation. 2014;130(20):1812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Biscetti F, Bonadia N, Nardella E, Cecchini AL, Landolfi R, Flex A. The role of the stem cells therapy in the peripheral artery disease. Int J Mol Sci. 2019;20(9):2233.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian H. Annex .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bethel, M., Arora, V., Annex, B.H. (2021). Angiogenesis: Perspectives from Therapeutic Angiogenesis. In: Navarro, T.P., Minchillo Lopes, L.L.N., Dardik, A. (eds) Stem Cell Therapy for Vascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-56954-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56954-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56953-2

  • Online ISBN: 978-3-030-56954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics