Skip to main content

Advertisement

Log in

The presence of clustered circulating tumor cells (CTCs) and circulating cytokines define an aggressive phenotype in metastatic colorectal cancer

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Colon carcinoma is a malignant tumor showing a marked preference to metastasize to distant organs. The presence of circulating tumor cells (CTCs) in the peripheral blood is a prerequisite for the formation of distant metastases. However, whether circulating cytokines are linked to the circulation of tumor cells, as individual cells or clusters, remain unclear. In this study, we investigated the circulating levels of TGF-beta, CXCL1, VEGF and PAI-1 as potential bioindicators of the presence of CTCs in patients with metastatic colon cancer.

Methods

Circulating tumor cells (CTCs) were isolated from peripheral blood by immunomagnetic separation and phenotypically characterized in a cohort of 103 patients with metastatic colon cancer. TGF-beta, CXCL1, VEGF and PAI-1 concentrations were determined by immunoassay in plasma samples from the same patients.

Results

We detected two different populations of CTCs, single cells or clusters in patients with metastatic colon cancer. Importantly, we found that the presence of clustered CTCs is significantly associated with elevated circulating levels of TGF-beta and CXCL1 and with reduced overall survival. Finally, we observed that circulating levels of cytokines are differently associated with the two populations of CTCs.

Conclusions

Taken together, these findings show that detection of clustered CTCs represents a negative prognostic factor in patients with metastatic colon cancer. The presence of clustered CTCs is associated with elevated circulating levels of cytokines such as TGF-beta and CXCL1. This suggests an additional role for circulating cytokines as predictive tool for cancer prognosis and diagnosis of minimal residual disease as well as assessment of tumor sensitivity to anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CRC:

Colon rectal cancers

CTCs:

Circulating tumor cells

CXCL1:

Chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)

VEGF:

Vascular endothelial growth factor

TGF-beta:

Transforming growth factor beta

PAI-1:

Plasminogen activator inhibitor-1

References

  1. Bardhan K, Liu K (2013) Epigenetics and colorectal cancer pathogenesis. Cancers 5(2):676–713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Marudanayagam R, Ramkumar K, Shanmugam V, Langman G, Rajesh P, Coldham C, Bramhall SR, Mayer D, Buckels J, Mirza DF (2009) Long-term outcome after sequential resections of liver and lung metastases from colorectal carcinoma. HPB (Oxford) 11(8):671–676

    Article  Google Scholar 

  3. Shah SA, Haddad R, Al-Sukhni W, Kim RD, Greig PD, Grant DR, Taylor BR, Langer B, Gallinger S, Wei AC (2006) Surgical resection of hepatic and pulmonary metastases from colorectal carcinoma. J Am Coll Surg 202(3):468–475

    Article  PubMed  Google Scholar 

  4. Miller G, Biernacki P, Kemeny NE, Gonen M, Downey R, Jarnagin WR, D’Angelica M, Fong Y, Blumgart LH, DeMatteo RP (2007) Outcomes after resection of synchronous or metachronous hepatic and pulmonary colorectal metastases. J Am Coll Surg 205(2):231–238

    Article  PubMed  Google Scholar 

  5. Paget S (1889) The distribution of secondary growth in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  6. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  7. Balzer EM, Konstantopoulos K (2012) Intercellular adhesion: mechanisms for growth and metastasis of epithelial cancers. Wiley Interdiscip Rev Syst Biol Med 4(2):171–181

    Article  PubMed  CAS  Google Scholar 

  8. Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112(1):3–25

    Article  PubMed  CAS  Google Scholar 

  9. Gassmann P, Haier J (2008) The tumor cell-host organ interface in the early onset of metastatic organ colonization. Clin Exp Metastasis 25(2):171–181

    Article  PubMed  CAS  Google Scholar 

  10. Gassmann P, Enns A, Haier J (2004) Role of tumor cell adhesion and migration in organ specific metastasis formation. Onkologie 27(6):577–582

    Article  PubMed  CAS  Google Scholar 

  11. Richmond A (2010) Chemokine modulation of the tumor microenvironment. Pigment Cell Melanoma Res 23(3):312–313

    Article  PubMed  PubMed Central  Google Scholar 

  12. Spano D, Heckc C, De Antonellis P, Christofori G, Zollo M (2012) Molecular networks that regulate cancer metastasis. Semi Cancer Biol 22:234–249

    Article  CAS  Google Scholar 

  13. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  PubMed  CAS  Google Scholar 

  14. Mazzocca A, Fransvea E, Dituri F, Lupo L, Antonaci S, Giannelli G (2010) Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology 51(2):523–534

    Article  PubMed  CAS  Google Scholar 

  15. Divella R, Daniele A, Gadaleta C, Tufaro A, Venneri MT, Paradiso A, Quaranta M (2012) Circulating transforming growth factor-β and epidermal growth factor receptor as related to virus infection in liver carcinogenesis. Anticancer Res 32(1):141–145

    PubMed  CAS  Google Scholar 

  16. Ogata H, Sekikawa A, Yamagishi H, Ichikawa K, Tomita S, Imura J, Ito Y, Fujita M, Tsubaki M, Kato H, Fujimori T, Fukui H (2010) GROα promotes invasion of colorectal cancer cells. Oncol Rep 24(6):1479–1486

    PubMed  CAS  Google Scholar 

  17. Imamura T, Hikita A, Inoue Y (2012) The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis. Breast Cancer 19(2):118–124

    Article  PubMed  Google Scholar 

  18. Divella R, Lacalamita R, Tommasi S, Coviello M, Daniele A, Garrisi VM, Abbate I, Simone G, Gadaleta C, Paradiso A, Quaranta M (2008) PAI-1, t-PA and circulating hTERT DNA as related to virus infection in liver carcinogenesis. Anticancer Res 28(1A):223–228

    PubMed  CAS  Google Scholar 

  19. Halamkova J, Kiss I, Pavlovsky Z, Tomasek J, Jarkovsky J, Cech Z, Tucek S, Hanakova L, Moulis M, Zavrelova J, Man M, Benda P, Robek O, Kala Z, Penka M (2011) Clinical significance of the plasminogen activator system in relation to grade of tumor and treatment response in colorectal carcinoma patients. Neoplasma 58(5):377–385

    Article  PubMed  CAS  Google Scholar 

  20. Xu B, Shen F, Cao J, Jia L (2013) Angiogenesis in liver metastasis of colorectal carcinoma. Front Biosci (Landmark Ed) 18:1435–1443

    Article  CAS  Google Scholar 

  21. Liu W, Xu J, Wang M, Wang Q, Bi Y, Han M (2011) Tumor derived vascular endothelial growth factor (VEGF-a) facilitates tumor metastasis through the VEGF-VEGFR1 signaling pathway. Int J Oncol 39:1213–1220

    PubMed  Google Scholar 

  22. Bellizzi A, Sebastian S, Ceglia P, Centonze M, Divella R, Manzillo EF, Azzariti A, Silvestris N, Montemurro S, Caliandro C, De Luca R, Cicero G, Rizzo S, Russo A, Quaranta M, Simone G, Paradiso A (2013) Co-expression of CD133 (+)/CD44 (+) in human colon cancer and liver metastasis. J Cell Physiol 228(2):408–415

    Article  PubMed  CAS  Google Scholar 

  23. Schluter K, Gassmann P, Enns A, Korb T, Hemping-Bovenkerk A, Holzen J, Haier J (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169(3):1064–1073

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sleemana JP, Christofori G, Fodded R, Collarde JG, Berx G, Decraeneh C, Rüegg C (2012) Concepts of metastasis in flux: the stromal progression model. Semin Cancer Biol 22:174–186

    Article  Google Scholar 

  25. Lorusso G, Rüegg C (2012) New insights into the mechanisms of organ-specific breast cancer metastasis. Semin Cancer Biol 22:226–233

    Article  PubMed  CAS  Google Scholar 

  26. Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G (2013) Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol 23:522–532

  27. Divella R, Daniele A, Savino E, Palma F, Bellizzi A, Giotta F, Simone G, Lioce M, Quaranta M, Paradiso A, Mazzocca A (2013) Circulating levels of transforming growth factor-beta (TGF-beta) and chemokine (C-X-C motif) ligand-1 (CXCL1) as predictors of distant seeding of circulating tumor cells in patients with metastatic breast cancer. Anticancer Res 33(4):1491–1497

    PubMed  CAS  Google Scholar 

  28. Lazennec G, Richmond A (2010) Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 16(3):133–144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massagué J (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150(1):165–178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, Priest LJ, Greystoke A, Zhou C, Morris K, Ward T, Blackhall FH, Dive C (2012) Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol 30(5):525–532

    Article  PubMed  Google Scholar 

  31. Kochetkova M, Kumar S, McColl SR (2009) Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death Differ 16(5):664–673

    Article  PubMed  CAS  Google Scholar 

  32. Muñoz NM, Baek JY, Grady WM (2008) TGF-beta has paradoxical and context dependent effects on proliferation and anoikis in human colorectal cancer cell lines. Growth Factors 26(5):254–262

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mazzocca A, Fransvea E, Lavezzari G, Antonaci S, Giannelli G (2009) Inhibition of transforming growth factor beta receptor I kinase blocks hepatocellular carcinoma growth through neo-angiogenesis regulation. Hepatology 50(4):1140–1151

    Article  PubMed  CAS  Google Scholar 

  34. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    Article  PubMed  CAS  Google Scholar 

  35. Colussi D, Brandi G, Bazzoli F, Ricciardiello L (2013) Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci 14(8):16365–16385

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A, Yamauchi M, Imamura Y, Qian ZR, Baba Y, Shima K, Sun R, Nosho K, Meyerhardt JA, Giovannucci E, Fuchs CS, Chan AT, Ogino S (2012) Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med 367(17):1596–1606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Yamauchi M, Morikawa T, Kuchiba A, Imamura Y, Qian ZR, Nishihara R, Liao X, Waldron L, Hoshida Y, Huttenhower C, Chan AT, Giovannucci E, Fuchs C, Ogino S (2012) Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut 61(6):847–854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Yamauchi M, Lochhead P, Morikawa T, Huttenhower C, Chan AT, Giovannucci E, Fuchs C, Ogino S (2012) Colorectal cancer: a tale of two sides or a continuum? Gut 6:794–797

    Article  Google Scholar 

  39. Rosty C, Young JP, Walsh MD, Clendenning M, Walters RJ, Pearson S, Pavluk E, Nagler B, Pakenas D, Jass JR, Jenkins MA, Win AK, Southey MC, Parry S, Hopper JL, Giles GG, Williamson E, English DR, Buchanan DD (2013) Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Mod Pathol 26(6):825–834

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declared that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosa Divella or Antonio Mazzocca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divella, R., Daniele, A., Abbate, I. et al. The presence of clustered circulating tumor cells (CTCs) and circulating cytokines define an aggressive phenotype in metastatic colorectal cancer. Cancer Causes Control 25, 1531–1541 (2014). https://doi.org/10.1007/s10552-014-0457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-014-0457-4

Keywords

Navigation