Skip to main content

Advertisement

Log in

The tumor cell–host organ interface in the early onset of metastatic organ colonisation

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastatic lesions are the leading cause of death among cancer patients. These lesions usually originate from clonal proliferation of single tumor cells dispersed from the primary tumor into the circulation which finally arrest in the capillary bed of distant organs. The microenvironment within the circulation of potential metastatic target organs provides a variety of pro- and anti- metastatic stimuli regulating the onset of organ colonisation by metastatic tumor cells. Mechanical shear stress, anoikis and cell mediated cytotoxicity within the microcirculation probably clear most circulating tumor cells. Adhesion, and eventually extravasation, are essential initial interactions of circulating tumor cells with distant organs and can provide escape from the cytotoxic environment within the circulation. Adhesion to the capillary wall is mostly controlled by the organ-specific availability of adhesion molecules on tumor cells, the endothelium, and the composition of the underlying extracellular matrix. The availability of pro-adhesive and pro-migratory paracrine signals provided by the organ specific microenvironment can further initiate the onset of metastatic organ colonisation. Tumor cell and microenvironment factors regulating survival within the microcirculation, adhesion and extravasation of tumor cells are highlighted in the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Morris M, Iacopetta B, Platell C (2007) Comparing survival outcomes for patients with colorectal cancer treated in public and private hospitals. Med J Aust 186:296–300

    PubMed  Google Scholar 

  2. Garcia-Closas M, Brinton LA, Lissowska J et al (2006) Established breast cancer risk factors by clinically important tumour characteristics. Br J Cancer 95:123–129

    PubMed  CAS  Google Scholar 

  3. Wolfle U, Muller V, Pantel K (2006) Disseminated tumor cells in breast cancer: detection, characterization and clinical relevance. Future Oncol 2:553–561

    PubMed  Google Scholar 

  4. Nicolson GL (1988) Cancer metastasis: TC and host organ properties important in metastasis to specific secondary sites. Biochem Biophys Acta 948:175–224

    PubMed  CAS  Google Scholar 

  5. Weiss L (1992) Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis 10:191–199

    PubMed  CAS  Google Scholar 

  6. Fidler IJ (2003) The pathogenesis of cancer metastasis: the seed and soil hypothesis revisited. Nat Rev Cancer 3:1–6

    Google Scholar 

  7. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  8. Thompson EW, Newgreen DF (2005) Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 65:5991–5995

    PubMed  CAS  Google Scholar 

  9. Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39:305–318

    PubMed  CAS  Google Scholar 

  10. Tse JC, Kalluri R (2007) Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem. 101:816–829

    PubMed  CAS  Google Scholar 

  11. Grünert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nature Rev/Mol Cell Biol 4:657–665

    Google Scholar 

  12. Timmers M, Vekemans K, Vermijlen D et al (2004) Interactions between rat colon carcinoma cells and Kupffer cells during the onset of hepatic metastasis. Int J Cancer 112:793–802

    PubMed  CAS  Google Scholar 

  13. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    PubMed  CAS  Google Scholar 

  14. Ewing J (1928) Neoplastic diseases, 6th edn. W. B. Sanders, Philadelphia

  15. Paget S (1889) The distribution of secondary growth in cancer of the breast. Lancet 1:571–573

    Google Scholar 

  16. Weiss L, Voit A, Lane WW (1984) Metastatic patterns in patients with carcinoma of the lower esophagus and upper rectum. Invasion Metastasis 4:47–60

    PubMed  CAS  Google Scholar 

  17. Tarin D, Price JE, Kettlewell MG et al (1984) Clinicopathological observations on metastasis in man studied in patients treated with peritoneovenous shunts. Br Med J (Clin Res Ed) 288:749–751

    Article  CAS  Google Scholar 

  18. Tarin D, Price JE, Kettlewell MG et al (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res 44:3584–3592

    PubMed  CAS  Google Scholar 

  19. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    PubMed  CAS  Google Scholar 

  20. Glaves D, Huben RP, Weiss L (1988) Haematogeneous dissemination of cells from human renal adenocarcinomas. Br J Cancer 57:32–35

    PubMed  CAS  Google Scholar 

  21. Glaves D, Ketch DA, Asch BB (1993) Conservation of epithelial cell phenotypes during hematogeneous metastasis from mammary carcinomas. J Natl Cancer Inst 76:933–938

    Google Scholar 

  22. Barbera-Guillem E, Weiss L (1993) Cancer-cell traffic in the liver. III Lethal deformation of B16 melanoma cells in liver sinusoids. Int J Cancer 54:880–884

    PubMed  CAS  Google Scholar 

  23. Weiss L, Nannmark U, Johansson BR et al (1992) Lethal deformation of cancer cells in the microcirculation: a potential rate regulator of hematogenous metastasis. Int J Cancer 50:103–107

    PubMed  CAS  Google Scholar 

  24. Weiss L (1991) Deformation-driven, lethal damage to cancer cells. Its contribution to metastatic inefficiency. Cell Biophys 18:73–79

    PubMed  CAS  Google Scholar 

  25. Weiss L, Harlos JP, Elkin G (1990) Mechanisms for the biomechanical destruction of L1210 leukemia cells: a rate regulator for metastasis. Cell Biophys 16:149–159

    PubMed  CAS  Google Scholar 

  26. Weiss L (1988) Biomechanical destruction of cancer cells in the heart: a rate regulator for hematogenous metastasis. Invasion Metastasis 8:228–237

    PubMed  CAS  Google Scholar 

  27. Weiss L (1989) Biomechanical destruction of cancer cells in skeletal muscle: a rate-regulator for hematogenous metastasis. Clin Exp Metastasis 7:483–491

    PubMed  CAS  Google Scholar 

  28. Haier J, Nicolson GL (2001) Tumor cell adhesion under hydrodynamic conditions of fluid flow. APMIS 109:241–262

    PubMed  CAS  Google Scholar 

  29. Kucik DF, Dustin ML, Miller JM (1996) Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J Clin Invest 97:2139–2144

    PubMed  CAS  Google Scholar 

  30. Ni N, Kevil CG, Bullard DC et al (2003) Avidity modulation activates adhesion under flow and requires cooperativity among adhesion receptors. Biophys J 85:4122–4133

    Google Scholar 

  31. Korb T, Schlüter K, Enns A et al (2004) Integrity of actin fibres and microtubules influences metastatic tumor cell adhesion. Exp Cell Res 299:236–247

    PubMed  CAS  Google Scholar 

  32. McIntire LV (1994) 1992 ALZA distinguished lecture: bioengineering and vascular biology. Ann Biomed Eng 22:2–13

    PubMed  CAS  Google Scholar 

  33. Galbraith CG, Sheetz MP (1998) Forces on adhesive contacts affect cell function. Curr Opin Cell Biol 10:566–571

    PubMed  CAS  Google Scholar 

  34. von Sengbusch A, Gassmann P, Fisch K et al (2005) Focal Adhesion Kinase regulates dynamic adhesion of carcinoma cells to collagens. Am J Pathol 166:585–593

    Google Scholar 

  35. Okuyama M, Ohta Y, Kambayashi J et al (1996) Fluid shear stress induces actin polymerization in human neutrophils. J Cell Biochem 63:432–441

    PubMed  CAS  Google Scholar 

  36. Haier J, Nicolson GL (2000) Tumor cell adhesion of human colon carcinoma cells with different metastatic properties to extracellular matrix under dynamic conditions of laminar flow. J Cancer Res Clin Oncol 126:699–706

    PubMed  CAS  Google Scholar 

  37. Glinskii OV, Huxley VH, Glinsky GV et al (2005) Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7:522–527

    PubMed  CAS  Google Scholar 

  38. Mook OR, Van Marle J, Vreeling-Sindelarova H et al (2003) Visualization of early events in tumor formation of eGFP-transfected rat colon cancer cells in liver. Hepatology 38:295–304

    PubMed  Google Scholar 

  39. Steinbauer M, Guba M, Cernaianu G et al (2003) GFP-transfected tumor cells are useful in examining early metastasis in vivo, but immune reaction precludes long-term tumor development studies in immunocompetent mice. Clin Exp Metastasis 20:135–141

    PubMed  CAS  Google Scholar 

  40. Ding L, Sunamura M, Kodama T et al (2001) In vivo evaluation of the early events associated with liver metastasis of circulating cancer cells. Br J Cancer 85:431–438

    PubMed  CAS  Google Scholar 

  41. Enns A, Gassmann P, Schluter K et al (2004) Integrins can directly mediate metastatic tumor cell adhesion within the liver sinusoids. J Gastrointest Surg 8:1049–1059

    PubMed  Google Scholar 

  42. Enns A, Korb T, Schluter K et al (2005) Alphavbeta5-integrins mediate early steps of metastasis formation. Eur J Cancer 41:1065–1072

    PubMed  CAS  Google Scholar 

  43. Haier J, Korb T, Hotz B et al (2003) An intravital model to monitor steps of metastatic tumor cell adhesion within the hepatic microcirculation. J Gastrointest Surg 7:507–514

    PubMed  Google Scholar 

  44. Wang H, Fu W, Im JH et al (2004) Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164:935–941

    PubMed  CAS  Google Scholar 

  45. Al-Mehdi AB, Tozawa K, Fisher AB et al (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6:100–102

    PubMed  CAS  Google Scholar 

  46. MacDonald IC, Schmidt EE, Morris VL et al (1992) Intravital videomicroscopy of the chorioallantoic microcirculation: a model system for studying metastasis. Microvasc Res 44:185–199

    PubMed  CAS  Google Scholar 

  47. Naumov GN, Wilson SM, MacDonald IC et al (1992) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112:1835–1842

    Google Scholar 

  48. Karpatkin S, Pearlstein E (1981) Role of platelets in tumor cell metastases. Ann Intern Med 95:636–641

    PubMed  CAS  Google Scholar 

  49. Palumbo JS, Talmage KE, Massari JV et al (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105:178–185

    PubMed  CAS  Google Scholar 

  50. Nakamori S, Kameyama M, Imaoka S et al (1993) Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study. Cancer Res 53:3632–3637

    PubMed  CAS  Google Scholar 

  51. Amado M, Carneiro F, Seixas M et al (1998) Dimeric sialyl-Le(x) expression in gastric carcinoma correlates with venous invasion and poor outcome. Gastroenterology 114:462–470

    PubMed  CAS  Google Scholar 

  52. Steinert BW, Tang DG, Grossi IM et al (1993) Studies on the role of platelet eicosanoid metabolism and integrin alpha IIb beta 3 in tumor-cell-induced platelet aggregation. Int J Cancer 54:92–101

    PubMed  CAS  Google Scholar 

  53. Borsig L, Wong R, Hynes RO et al (2002) Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci USA 99:2193–2198

    PubMed  CAS  Google Scholar 

  54. Camerer E, Qazi AA, Duong DN et al (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104:397–401

    PubMed  CAS  Google Scholar 

  55. Amirkhosravi A, Mousa SA, Amaya M et al (2003) Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost 90:549–554

    PubMed  CAS  Google Scholar 

  56. Klepfish A, Greco MA, Karpatkin S (1993) Thrombin stimulates melanoma tumor-cell binding to endothelial cells and subendothelial matrix. Int J Cancer 53:978–982

    PubMed  CAS  Google Scholar 

  57. Dardik R, Savion N, Kaufmann Y et al (1998) Thrombin promotes platelet-mediated melanoma cell adhesion to endothelial cells under flow conditions: role of platelet glycoproteins P-selectin and GPIIb-IIIA. Br J Cancer 77:2069–2075

    PubMed  CAS  Google Scholar 

  58. Honn KV, Tang DG, Grossi IM et al (1994) Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis. Exp Cell Res 210:1–9

    PubMed  CAS  Google Scholar 

  59. Liotta LA (1992) Cancer cell invasion and metastasis. Sci Am 266:54–59, 62–63

    Google Scholar 

  60. Dong C, Slattery MJ, Rank BM (2002) In vitro characterization and micromechanics of tumor cell chemotactic protrusion, locomotion, and extravasation. Ann Biomed Eng 30:344–355

    PubMed  Google Scholar 

  61. Slattery MJ, Dong C (2003) Neutrophils influence melanoma adhesion and migration under flow conditions. Int J Cancer 106:713–722

    PubMed  CAS  Google Scholar 

  62. Slattery MJ, Liang S, Dong C (2005) Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am J Physiol Cell Physiol 288:C831–C839

    PubMed  CAS  Google Scholar 

  63. Wu QD, Wang JH, Condron C et al (2001) Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 280:C814–C822

    PubMed  CAS  Google Scholar 

  64. Khatib AM, Fallavollita L, Wancewicz EV et al (2002) Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Res 62:5393–5398

    PubMed  CAS  Google Scholar 

  65. Kim YJ, Borsig L, Han HL et al (1999) Distinct selectin ligands on colon carcinoma mucins can mediate pathological interactions among platelets, leukocytes, and endothelium. Am J Pathol 155:461–472

    PubMed  CAS  Google Scholar 

  66. Wisse E, van’t Noordende JM, van der Meulen J et al (1976) The pit cell: description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell Tissue Res 173:423–435

    PubMed  CAS  Google Scholar 

  67. Grundy MA, Zhang T, Sentmann CL (2007) NK cells remove B16F10 tumor cells in a perforin and interferon-gamma independent manner in vivo. Cancer Immunol Immunother 56:1153–1161

    PubMed  CAS  Google Scholar 

  68. Wiltrout RH (2000) Regulation and antimetastatic functions of liver-associated natural killer cells. Immunol Rev 174:63–76

    PubMed  CAS  Google Scholar 

  69. Vermijlen D, Luo D, Robaye B et al (1999) Pit cells (Hepatic natural killer cells) of the rat induce apoptosis in colon carcinoma cells by the perforin/granzyme pathway. Hepatology 29:51–56

    PubMed  CAS  Google Scholar 

  70. Shresta S, MacIvor DM, Heusel JW et al (1995) Natural killer and lymphokine-activated killer cells require granzyme B for the rapid induction of apoptosis in susceptible target cells. Proc Natl Acad Sci USA 92:5679–5683

    PubMed  CAS  Google Scholar 

  71. Oshimi Y, Oda S, Honda Y et al (1996) Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells. J Immunol 157:2909–2915

    PubMed  CAS  Google Scholar 

  72. Wiltrout RH, Herberman RB, Zhang SR et al (1985) Role of organ-associated NK cells in decreased formation of experimental metastases in lung and liver. J Immunol 134:4267–4275

    PubMed  CAS  Google Scholar 

  73. Smyth MJ, Thia KY, Street SE et al (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668

    PubMed  CAS  Google Scholar 

  74. Smyth MJ, Taniguchi M, Street SE (2000) The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 165:2665–2670

    PubMed  CAS  Google Scholar 

  75. Gardner CR, Wasserman AJ, Laskin DL (1987) Differential sensitivity of tumor targets to liver macrophage-mediated cytotoxicity. Cancer Res 47:6686–6691

    PubMed  CAS  Google Scholar 

  76. Decker T, Kiderlen AF, Lohmann-Matthes ML (1985) Liver macrophages (Kupffer cells) as cytotoxic effector cells in extracellular and intracellular cytotoxicity. Infect Immun 50:358–364

    PubMed  CAS  Google Scholar 

  77. Sturm JW, Magdeburg R, Berger K (2003) Influence of TNFA on the formation of liver metastases in a syngenic mouse model. Int J Cancer 107:11–21

    PubMed  CAS  Google Scholar 

  78. Fingar VH, Taber SW, Buschemeyer WC (1997) Constitutive and stimulated expression of ICAM-1 protein on pulmonary endothelial cells in vivo. Microvasc Res 54:135–144

    PubMed  CAS  Google Scholar 

  79. Heimburg J, Yan J, Morey S et al (2006) Inhibition of spontaneous breast cancer metastasis by anti-Thomsen-Friedenreich antigen monoclonal antibody JAA-F11. Neoplasia 8:939–948

    PubMed  CAS  Google Scholar 

  80. Ito S, Nakanishi H, Ikehara Y (2001) Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line. Int J Cancer 93:212–217

    PubMed  CAS  Google Scholar 

  81. Shimizu S, Yamada N, Sawada T et al (2001) Ultrastructure of early phase hepatic metastasis of human colon carcinoma cells with special reference to desmosomal junctions with hepatocytes. Pathol Int 50:953–959

    Google Scholar 

  82. Khatib AM, Kontogiannea M, Fallavollita L et al. (1999). Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res 59:1356–1361

    PubMed  CAS  Google Scholar 

  83. Wang HH, McIntosh AR, Hasinoff BB et al (2002) Regulation of B16F1 melanoma cell metastasis by inducible functions of the hepatic microvasculature. Eur J Cancer 38:1261–1270

    PubMed  CAS  Google Scholar 

  84. Orr FW, Wang HH, Lafrenie RM et al (2000) Interactions between cancer cells and the endothelium in metastasis. J Pathol 190:310–329

    PubMed  CAS  Google Scholar 

  85. Eble JA, Haier J (2006) Integrins in cancer treatment. Curr Cancer Drug Targets 6:89–105

    PubMed  CAS  Google Scholar 

  86. Meyer T, Hart IR (1998) Mechanisms of tumour metastasis. Eur J Cancer 34:214–221

    PubMed  CAS  Google Scholar 

  87. Gooding JM, Yap KL, Ikura M (2004) The cadherin–catenin complex as a focal point of cell adhesion and signalling: new insights from three-dimensional structures. Bioessays 26:497–511

    PubMed  CAS  Google Scholar 

  88. Silbert JE, Sugumaran G (2003) A starting place for the road to function. Glycoconj 19:227–237

    Google Scholar 

  89. Haier J, Nasralla M, Nicolson GL (2000) Cell surface molecules and their prognostic values in assessing colorectal carcinomas. Ann Surg 231:11–24

    PubMed  CAS  Google Scholar 

  90. Juliano RL, Varner JA (1993) Adhesion molecules in cancer: the role of integrins. Curr Opin Cell Biol 5:812–818

    PubMed  CAS  Google Scholar 

  91. Hulleman E, Boonstra J (2001) Regulation of G1 phase progression by growth factors and the extracellular matrix. Cell Mol Life Sci 58:80–93

    PubMed  CAS  Google Scholar 

  92. Juliano RL, Varner JA (1993) Adhesion molecules in cancer: the role of integrins. Curr Opin Cell Biol 5:812–818

    PubMed  CAS  Google Scholar 

  93. Varner JA, Emerson DA, Juliano RL (1995) Integrin alpha5beta1 expression negatively regulate cell growth: reversal by attachment to fibronectin. Mol Biol Cell 6:725–740

    PubMed  CAS  Google Scholar 

  94. Derksen PW, Liu X, Saridin F et al (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10:437–449

    PubMed  CAS  Google Scholar 

  95. Owens DM, Watt FM (2001) Influence of beta1 integrins on epidermal squamous cell carcinoma formation in a transgenic mouse model: alpha3beta1, but not alpha2beta1, suppresses malignant conversion. Cancer Res 61:5248–5254

    PubMed  CAS  Google Scholar 

  96. Zutter MM, Santoro SA, Staatz WD (1995) Re-expression of the alpha2beta1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proc Natl Acad Sci USA 92:7411–7415

    PubMed  CAS  Google Scholar 

  97. Bogenrieder T, Herlyn M (2003) Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 22:6524–6536

    PubMed  CAS  Google Scholar 

  98. Woodhouse EC, Chuaqui RF, Liotta LA (1997) General mechanisms of metastasis. Cancer 80:1529–1537

    PubMed  CAS  Google Scholar 

  99. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    PubMed  Google Scholar 

  100. Byers SW, Sommers CL, Hoxter B, Mercurio AM, Tozeren A (1995) Role of E-cadherin in the response of tumor cell aggregates to lymphatic, venous and arterial flow: measurement of cell–cell adhesion strength. J Cell Sci 108:2053–2064

    PubMed  CAS  Google Scholar 

  101. Wolf K, Mazo I, Leung H (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277

    PubMed  CAS  Google Scholar 

  102. Friedl P, Wolf K (2003) Tumour–cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    PubMed  CAS  Google Scholar 

  103. Sahai E, Marschall CJ (2003) Differing modes of tumor cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5:711–719

    PubMed  CAS  Google Scholar 

  104. Fukumura D, Yuan F, Monsky WL (1997) Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 151:679–688

    PubMed  CAS  Google Scholar 

  105. Kikkawa H, Kaihou M, Horaguchi N (2002) Role of integrin alphavbeta3 in the early phase of liver metastasis: PET and IVM analyses. Clin Exp Metastasis 19:717–725

    PubMed  CAS  Google Scholar 

  106. Nip J, Shibata H, Loskutoff DJ et al (1992) Human melanoma cells derived from lymphatic metastasis use the integrin alpha(V)beta(3) to adhere to lymph node vitronectin. J Clin Invest 90:1406–1413

    PubMed  CAS  Google Scholar 

  107. Byzova TV, Kim W, Midura RJ et al (2000) Activation of integrin alpha(V)beta(3) regulates cell adhesion and migration to bone sialoprotein. Exp Cell Res 254:299–308

    PubMed  CAS  Google Scholar 

  108. Liapsi H, Flath H, Kitazawa S (1996) Integrin alpha V beta 3 expression by bone-residing breast cancer metastasis. Diagn Mol Pathol 5:127–135

    Google Scholar 

  109. Sloan EK, Pouliot N, Stanley KL et al (2006) Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res 8:R20

    PubMed  Google Scholar 

  110. Bosman FT, Stamenkovic I (2003) Functional structure and composition of the extracellular matrix. J Pathol 200:423–428

    PubMed  CAS  Google Scholar 

  111. Hayashi C, Rittling S, Hayata T et al (2007) Serum osteopontin, an enhancer of tumor metastasis to bone, promotes B16 melanoma cell migration. J Cell Biochem 27 [Epub ahead of print]

  112. Desai B, Rogers MJ, Chellaiah MA (2007) Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer 6:18

    PubMed  Google Scholar 

  113. Paris S, Sesboue R, Chauzy C et al (2006) Hyaluronectin modulation of lung metastasis in nude mice. Eur J Cancer 42:3253–3259

    PubMed  CAS  Google Scholar 

  114. Bauerle T, Peterschmitt J, Hilbig H et al (2006) Treatment of bone metastasis induced by MDA-MB-231 breast cancer cells with an antibody against bone sialoprotein. Int J Oncol 28:573–583

    PubMed  Google Scholar 

  115. Jacob K, Webber M, Benayahu D et al (1999) Osteonectin promotes prostate cancer cell migration and invasion: a positive mechanism for metastasis to bone. Cancer Res 59:4453–4457

    PubMed  CAS  Google Scholar 

  116. Wang H, Fu W, Im JH et al (2004) Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164:935–941

    PubMed  CAS  Google Scholar 

  117. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    PubMed  CAS  Google Scholar 

  118. McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they´re not just for matrix anymore. Curr Opin Cell Biol 13:534–540

    PubMed  CAS  Google Scholar 

  119. Mackay CR (2001) Chemokines: immunology’s high impact factors. Nat Immunol 2:95–101

    PubMed  CAS  Google Scholar 

  120. Schier AF (2003) Chemokine signaling: rules of attraction. Curr Biol 13:R192–R194

    PubMed  CAS  Google Scholar 

  121. Youngs SJ, Ali SA, Taub DD et al (1997) Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer 71:257–266

    PubMed  CAS  Google Scholar 

  122. Zipin-Roitman A, Meshel T, Sagi-Assif O et al (2007) CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Res 67:3396–3405

    PubMed  CAS  Google Scholar 

  123. Burger JA, Burger M, Kipps TJ (1999) Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 94:3658–3667

    PubMed  CAS  Google Scholar 

  124. Burger M, Glodek A, Hartmann T et al (2003) Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene 22:8093–8101

    PubMed  CAS  Google Scholar 

  125. Zeelenberg IS, Ruuls-Van Stalle L, Roos E (2003) The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res 63:3833–3839

    PubMed  CAS  Google Scholar 

  126. Cardones AR, Murakami T, Hwang ST (2003) CXCR4 enhances adhesion of B16 tumor cells to endothelial cells In vitro and in vivo via beta(1) integrin. Cancer Res 63:6751–6757

    PubMed  CAS  Google Scholar 

  127. Dellacasagrande J, Schreurs OJ, Hofgaard PO et al (2003) Liver metastasis of cancer facilitated by chemokine receptor CCR6. Scand J Immunol 57:534–544

    PubMed  CAS  Google Scholar 

  128. Kucia M, Jankowski K, Reca R et al (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35:233–245

    PubMed  CAS  Google Scholar 

  129. Fernandis AZ, Prasad A, Band H et al (2004) Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23:157–167

    PubMed  CAS  Google Scholar 

  130. Wang J, Loberg R, Taichman RS (2006) The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 25:573–587

    PubMed  CAS  Google Scholar 

  131. Wiley HE, Gonzalez EB, Maki W et al (2001) Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93:1638–1643

    Article  PubMed  CAS  Google Scholar 

  132. Pelletier AJ, van der Laan LJ, Hildbrand P et al (2000) Presentation of chemokine SDF-1 alpha by fibronectin mediates directed migration of T cells. Blood 96:2682–2690

    PubMed  CAS  Google Scholar 

  133. McNeel DG, Eickhoff J, Lee FT et al (2005) Phase I trial of a monoclonal antibody specific for alphavbeta3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res 11:7851–7860

    PubMed  CAS  Google Scholar 

  134. Ishida T, Ueda R (2006) CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Sci 97:1139–1146

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gassmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassmann, P., Haier, J. The tumor cell–host organ interface in the early onset of metastatic organ colonisation. Clin Exp Metastasis 25, 171–181 (2008). https://doi.org/10.1007/s10585-007-9130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9130-6

Keywords

Navigation