Skip to main content

Advertisement

Log in

Prognostic value of tumor infiltrating lymphocyte subsets in breast cancer depends on hormone receptor status

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Interaction between immune-regulatory proteins and tumor infiltrating lymphocytes (TILs) is complex, and their associations may have significant clinical implications. This study was designed to evaluate the relationships between immunomodulatory proteins and TIL subsets and their impact on prognosis in breast cancer.

Methods

377 invasive breast cancer cases were selected, and immunohistochemistry was performed for HLA-A, HLA-ABC, and indoleamine 2,3-dioxygenase (IDO); CD4+, CD8+, and FOXP3+ T cells were counted in intratumoral and stromal areas for both absolute numbers as well as their ratios.

Results

While HLA-ABC and HLA-A expressions showed a positive correlation with CD8+ and FOXP3+ TIL infiltration, IDO expression showed a negative correlation with FOXP3+/CD4+ and FOXP3+/CD8+ T cell ratios. Expressions of HLA-ABC, HLA-A, and IDO shared an association with negative estrogen receptor status. Infiltration of CD4+, CD8+, and FOXP3+ TILs was significantly higher in tumors with high histologic grade, negative hormone receptor status, HER2 amplification, high Ki-67 index, and p53 overexpression. In survival analyses, increased CD4+ TIL infiltration was associated with better prognosis of the patients while other TIL subset infiltration and expression of immunomodulatory proteins had no prognostic significance. In subgroup analyses, high CD4+ TIL infiltration was revealed as an independent good prognostic factor in hormone receptor-negative subgroup while high FOXP3+/CD8+ T cell ratio was found to be an independent adverse prognostic factor in hormone receptor-positive subgroup, especially in luminal A subtype.

Conclusion

CD4+ TIL subset and FOXP3+/CD8+ T cell ratio have different prognostic significance in breast cancer according to hormone receptor status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bindea G, Mlecnik B, Fridman WH, Galon J (2011) The prognostic impact of anti-cancer immune response: a novel classification of cancer patients. Semin Immunopathol 33(4):335–340. doi:10.1007/s00281-011-0264-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9(4):212. doi:10.1186/bcr1746

    Article  PubMed  PubMed Central  Google Scholar 

  3. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274. doi:10.1038/nm934

    Article  CAS  PubMed  Google Scholar 

  4. Powell AG, Horgan PG, Edwards J (2012) The bodies fight against cancer: is human leukocyte antigen (HLA) class 1 the key? J Cancer Res Clin Oncol 138(5):723–728. doi:10.1007/s00432-012-1192-4

    Article  CAS  PubMed  Google Scholar 

  5. Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, Budczies J, Darb-Esfahani S, Kronenwett R, Hanusch C, von Torne C, Weichert W, Engels K, Solbach C, Schrader I, Dietel M, von Minckwitz G (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28(1):105–113. doi:10.1200/JCO.2009.23.7370

    Article  CAS  PubMed  Google Scholar 

  6. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 31(7):860–867. doi:10.1200/JCO.2011.41.0902

    Article  CAS  PubMed  Google Scholar 

  7. Mohammed ZMA, Going JJ, Edwards J, Elsberger B, Doughty JC, McMillan DC (2012) The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer 107(5):864–873. doi:10.1038/bjc.2012.347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee HJ, Seo JY, Ahn JH, Ahn SH, Gong G (2013) Tumor-associated lymphocytes predict response to neoadjuvant chemotherapy in breast cancer patients. J Breast Cancer 16(1):32–39. doi:10.4048/jbc.2013.16.1.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955. doi:10.1200/JCO.2010.30.5037

    Article  PubMed  Google Scholar 

  10. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Desmedt C, Piccart MJ, Loibl S, Denkert C, Smyth MJ, Joensuu H, Sotiriou C (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25(8):1544–1550. doi:10.1093/annonc/mdu112

    Article  CAS  PubMed  Google Scholar 

  11. Ibrahim EM, Al-Foheidi ME, Al-Mansour MM, Kazkaz GA (2014) The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: a meta-analysis. Breast Cancer Res Treat 148(3):467–476. doi:10.1007/s10549-014-3185-2

    Article  CAS  PubMed  Google Scholar 

  12. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24(34):5373–5380. doi:10.1200/Jco.2006.05.9584

    Article  PubMed  Google Scholar 

  13. Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, Ravoet M, Le Buanec H, Sibille C, Manfouo-Foutsop G, Veys I, Haibe-Kains B, Singhal SK, Michiels S, Rothe F, Salgado R, Duvillier H, Ignatiadis M, Desmedt C, Bron D, Larsimont D, Piccart M, Sotiriou C, Willard-Gallo K (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Investig 123(7):2873–2892. doi:10.1172/JCI67428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Milani A, Sangiolo D, Montemurro F, Aglietta M, Valabrega G (2013) Active immunotherapy in HER2 overexpressing breast cancer: current status and future perspectives. Ann Oncol 24(7):1740–1748. doi:10.1093/annonc/mdt133

    Article  CAS  PubMed  Google Scholar 

  15. Gnant M, Harbeck N, Thomssen C (2011) St. Gallen 2011: summary of the consensus discussion. Breast Care 6(2):136–141. doi:10.1159/000328054 (Basel)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seo AN, Lee HJ, Kim EJ, Kim HJ, Jang MH, Lee HE, Kim YJ, Kim JH, Park SY (2013) Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer 109(10):2705–2713. doi:10.1038/bjc.2013.634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bos R, Sherman LA (2010) CD4(+) T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8(+) T lymphocytes. Cancer Res 70(21):8368–8377. doi:10.1158/0008-5472.Can-10-1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zamarron BF, Chen WJ (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7(5):651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim ST, Jeong H, Woo OH, Seo JH, Kim A, Lee ES, Shin SW, Kim YH, Kim JS, Park KH (2013) Tumor-infiltrating lymphocytes, tumor characteristics, and recurrence in patients with early breast cancer. Am J Clin Oncol 36(3):224–231. doi:10.1097/COC.0b013e3182467d90

    Article  CAS  PubMed  Google Scholar 

  20. Whiteside TL (2014) Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother 63(1):67–72. doi:10.1007/s00262-013-1490-y

    Article  CAS  PubMed  Google Scholar 

  21. Shou J, Zhang Z, Lai Y, Chen Z, Huang J (2016) Worse outcome in breast cancer with higher tumor-infiltrating FOXP3+ Tregs: a systematic review and meta-analysis. BMC Cancer 16:687. doi:10.1186/s12885-016-2732-0

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu S, Foulkes WD, Leung S, Gao D, Lau S, Kos Z, Nielsen TO (2014) Prognostic significance of FOXP3+ tumor-infiltrating lymphocytes in breast cancer depends on estrogen receptor and human epidermal growth factor receptor-2 expression status and concurrent cytotoxic T-cell infiltration. Breast Cancer Res 16(5):432. doi:10.1186/s13058-014-0432-8

    Article  PubMed  PubMed Central  Google Scholar 

  23. Loi S (2013) Tumor-infiltrating lymphocytes, breast cancer subtypes and therapeutic efficacy. Oncoimmunology 2(7):e24720. doi:10.4161/onci.24720

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fleming KA, McMichael A, Morton JA, Woods J, McGee JO (1981) Distribution of HLA class 1 antigens in normal human tissue and in mammary cancer. J Clin Pathol 34(7):779–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee HJ, Song IH, Park IA, Heo SH, Kim YA, Ahn JH, Gong G (2016) Differential expression of major histocompatibility complex class I in subtypes of breast cancer is associated with estrogen receptor and interferon signaling. Oncotarget. doi:10.18632/oncotarget.8798

    Google Scholar 

  26. Ryu YH, Kim JC (2007) Expression of indoleamine 2,3-dioxygenase in human corneal cells as a local immunosuppressive factor. Investig Ophthalmol Vis Sci 48(9):4148–4152. doi:10.1167/iovs.05-1336

    Article  Google Scholar 

  27. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, Gobel G, Margreiter R, Konigsrainer A, Fuchs D, Amberger A (2006) Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res 12(4):1144–1151. doi:10.1158/1078-0432.CCR-05-1966

    Article  CAS  PubMed  Google Scholar 

  28. Inaba T, Ino K, Kajiyama H, Yamamoto E, Shibata K, Nawa A, Nagasaka T, Akimoto H, Takikawa O, Kikkawa F (2009) Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol Oncol 115(2):185–192. doi:10.1016/j.ygyno.2009.07.015

    Article  CAS  PubMed  Google Scholar 

  29. Yoshida N, Ino K, Ishida Y, Kajiyama H, Yamamoto E, Shibata K, Terauchi M, Nawa A, Akimoto H, Takikawa O, Isobe K, Kikkawa F (2008) Overexpression of indoleamine 2,3-dioxygenase in human endometrial carcinoma cells induces rapid tumor growth in a mouse xenograft model. Clin Cancer Res 14(22):7251–7259. doi:10.1158/1078-0432.CCR-08-0991

    Article  CAS  PubMed  Google Scholar 

  30. Laimer K, Troester B, Kloss F, Schafer G, Obrist P, Perathoner A, Laimer J, Brandacher G, Rasse M, Margreiter R, Amberger A (2011) Expression and prognostic impact of indoleamine 2,3-dioxygenase in oral squamous cell carcinomas. Oral Oncol 47(5):352–357. doi:10.1016/j.oraloncology.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  31. Ivan H, Chan VW, Bilardello Melissa, Jorgenson Brett, Bal Harminder, McCauley Scott, Van Vlasselaer Peter, Mumm JB (2016) PEG-rIL-10 treatment decreases FoxP3+ Tregs despite upregulation of intratumoral IDO. Oncoimmunology 5(7):e1197458. doi:10.1080/2162402X.2016.1197458

    Article  Google Scholar 

  32. Larrain MTI, Rabassa ME, Lacunza E, Barbera A, Creton A, Segal-Eiras A, Croce MV (2014) IDO is highly expressed in breast cancer and breast cancer-derived circulating microvesicles and associated to aggressive types of tumors by in silico analysis. Tumor Biol 35(7):6511–6519. doi:10.1007/s13277-014-1859-3

    Article  Google Scholar 

  33. Soliman H, Rawal B, Fulp J, Lee JH, Lopez A, Bui MM, Khalil F, Antonia S, Yfantis HG, Lee DH, Dorsey TH, Ambs S (2013) Analysis of indoleamine 2-3 dioxygenase (IDO1) expression in breast cancer tissue by immunohistochemistry. Cancer Immunol Immun 62(5):829–837. doi:10.1007/s00262-013-1393-y

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by a Grant from the National Research Foundation of Korea (NRF)’s Basic Science Research Program funded by the Ministry of Science, ICT, and Future Planning (Grant No. NRF-2015R1A2A2A01007907) to Park SY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Yeon Park.

Ethics declarations

Conflict of interest

Chung YR declares that she has no conflict of interest. Kim HJ declares that she has no conflict of interest. Jang MH declares that she has no conflict of interest. Park SY declares that she has no conflict of interest.

Ethical approval

This study was approved by the institutional review board (protocol # B-1601/332-304). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Institutional review board waived the requirement for obtaining informed consent for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, Y.R., Kim, H.J., Jang, M.H. et al. Prognostic value of tumor infiltrating lymphocyte subsets in breast cancer depends on hormone receptor status. Breast Cancer Res Treat 161, 409–420 (2017). https://doi.org/10.1007/s10549-016-4072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-4072-9

Keywords

Navigation