Skip to main content
Log in

High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Animal models of hearing loss and tinnitus observe pathological neural activity in the tonotopic frequency maps of the primary auditory cortex. Here, we applied ultra high-field fMRI at 7 T to test whether human patients with unilateral hearing loss and tinnitus also show altered functional activity in the primary auditory cortex. The high spatial resolution afforded by 7 T imaging allowed tonotopic mapping of primary auditory cortex on an individual subject basis. Eleven patients with unilateral hearing loss and tinnitus were compared to normal-hearing controls. Patients showed an over-representation and hyperactivity in a region of the cortical map corresponding to low frequencies sounds, irrespective of the hearing loss and tinnitus range, which in most cases affected higher frequencies. This finding of hyperactivity in low frequency map regions, irrespective of hearing loss range, is consistent with some previous studies in animal models and corroborates a previous study of human tinnitus. Thus these findings contribute to accumulating evidence that gross cortical tonotopic map reorganization is not a causal factor of tinnitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Axelsson A, Ringdahl A (1989) Tinnitus—a study of its prevalence and characteristics. Br J Audiol 23:53–62

    Article  CAS  PubMed  Google Scholar 

  • Baumann S, Petkov CI, Griffiths TD (2013) A unified framework for the organization of the primate auditory cortex. Front Syst Neurosci 7:11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyen K, Langers DRM, de Kleine E, van Dijk P (2013) Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res 295:67–78

    Article  PubMed  Google Scholar 

  • Boyen K, de Kleine E, van Dijk P, Langers DRM (2014) Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss. Hear Res 312:48–59

    Article  PubMed  Google Scholar 

  • Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22:2383–2390

    CAS  PubMed  Google Scholar 

  • Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Costa S, Zwaag W van der, Marques JP et al (2011) Human Primary Auditory Cortex Follows the Shape of Heschl’s Gyrus. J Neurosci 31:14067–14075

    Article  CAS  PubMed  Google Scholar 

  • Da Costa S, Zwaag W van der, Miller LM et al (2013) Tuning In to sound: frequency-selective attentional filter in human primary auditory cortex. J Neurosci 33:1858–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Costa S, Saenz M, Clarke S, van der Zwaag W (2015) Tonotopic gradients in human primary auditory cortex: concurring evidence from high-resolution 7 T and 3 T fMRI. Brain Topogr 28:66–69

    Article  PubMed  Google Scholar 

  • De Martino F, Moerel M, van de Moortele P-F et al (2013) Spatial organization of frequency preference and selectivity in the human inferior colliculus. Nat Commun 4:1386

    Article  PubMed  PubMed Central  Google Scholar 

  • Dick F, Tierney AT, Lutti A et al (2012) In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci Off J. Soc Neurosci 32:16095–16105

    Article  CAS  Google Scholar 

  • Eggermont JJ (2015) Animal models of spontaneous activity in the healthy and impaired auditory system. Front Neural Circuits 9:19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggermont JJ, Komiya H (2000) Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear Res 142:89–101

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ, Roberts LE (2012) The neuroscience of tinnitus: understanding abnormal and normal auditory perception. Front Syst Neurosci 6:53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggermont JJ, Roberts LE (2015) Tinnitus: animal models and findings in humans. Cell Tissue Res 361:311–336

    Article  PubMed  Google Scholar 

  • Elgoyhen AB, Langguth B, De Ridder D, Vanneste S (2015) Tinnitus: perspectives from human neuroimaging. Nat Rev Neurosci 16:632–642

    Article  CAS  PubMed  Google Scholar 

  • Emmert K, Ville DVD, Bijlenga P et al (2014) Auditory cortex activation is modulated by somatosensation in a case of tactile tinnitus. Neuroradiology 56:511–514

    Article  PubMed  Google Scholar 

  • Engel SA (2012) The development and use of phase-encoded functional MRI designs. NeuroImage 62:1195–1200.

    Article  PubMed  Google Scholar 

  • Engineer ND, Riley JR, Seale JD et al (2011) Reversing pathological neural activity using targeted plasticity. Nature 470:101–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu JW, Halpin CF, Nam E-C et al (2010) Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 104(6):3361–3370. doi:10.1152/jn.00226.2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guinchard AC, Ghazaleh N, Saenz M, Fornari E, Prior JO, Maeder P, Adib A, Maire R (2016) Study of tonotopic brain changes with functional MRI and FDG-PET in a patient with unilateral objective cochlear tinnitus. Hear Res 341:232–239

    Article  PubMed  Google Scholar 

  • Hackett TA (2011) Information flow in the auditory cortical network. Hear Res 271:133–146

    Article  PubMed  Google Scholar 

  • Haller S, Birbaumer N, Veit R (2009) Real-time fMRI feedback training may improve chronic tinnitus. Eur Radiol 20:696–703

    Article  PubMed  Google Scholar 

  • Haller S, Kopel R, Jhooti P, et al (2013) Dynamic reconfiguration of human brain functional networks through neurofeedback. NeuroImage 81:243–252.

    Article  PubMed  Google Scholar 

  • Joly O, Baumann S, Balezeau F, Thiele A, Griffiths TD (2014) Merging functional and structural properties of the monkey auditory cortex. Front Neurosci 8:198

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaltenbach JA, Zacharek MA, Zhang J, Frederick S (2004) Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett 355:121–125

    Article  CAS  PubMed  Google Scholar 

  • Knudson IM, Melcher JR (2016) Elevated acoustic startle responses in humans: relationship to reduced loudness discomfort level, but not self-report of hyperacusis. J Assoc Res Otolaryngol 17(3):223–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Langers DRM (2014) Assessment of tonotopically organised subdivisions in human auditory cortex using volumetric and surface-based cortical alignments. Hum Brain Mapp 35:1544–1561

    Article  PubMed  Google Scholar 

  • Langers DRM, van Dijk P (2012b) Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cereb Cortex 22:2024–2038

    Article  PubMed  Google Scholar 

  • Langers DRM, Kleine E de (2012a) Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci 6:2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanting CP, de Kleine E, Langers DRM, van Dijk P (2014) Unilateral tinnitus: changes in connectivity and response lateralization measured with fMRI. PLoS ONE 9(10):e110704

    Article  PubMed  PubMed Central  Google Scholar 

  • Leaver AM, Renier L, Chevillet MA et al (2011) Dysregulation of limbic and auditory networks in tinnitus. Neuron 69:33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard CM, Puranik C, Kuldau JM, Lombardino LJ (1998) Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb Cortex 8:397–406

    Article  CAS  PubMed  Google Scholar 

  • Llano DA, Turner J, Caspary DM (2012) Diminished cortical inhibition in an aging mouse model of chronic tinnitus. J Neurosci 32:16141–16148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W-LD, Hidaka H, May BJ (2006) Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus. Hear Res 212:9–21

    Article  PubMed  Google Scholar 

  • Makin TR, Scholz J, Filippini N et al (2013) Phantom pain is associated with preserved structure and function in the former hand area. Nat Commun 4:1570

    Article  PubMed  PubMed Central  Google Scholar 

  • Makin TR, Scholz J, Henderson Slater D et al (2015) Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain 138:2140–2146

    Article  PubMed  PubMed Central  Google Scholar 

  • Marie D, Jobard G, Crivello F, et al (2013) Descriptive anatomy of Heschl’s gyri in 430 healthy volunteers, including 198 left-handers. Brain Struct Funct 220:729–743.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques JP, Kober T, Krueger G, et al (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage 49:1271–1281.

    Article  PubMed  Google Scholar 

  • Martino FD, Moerel M, Xu J et al (2015) High-resolution mapping of myeloarchitecture in vivo: localization of auditory areas in the human brain. Cereb Cortex 25:3394–3405

    Article  PubMed  Google Scholar 

  • Martuzzi R, van der Zwaag W, Farthouat J et al (2012) Human finger somatotopy in areas 3b, 1, and 2: A 7 T fMRI study using a natural stimulus. Hum Brain Mapp 35(1):213–226

    Article  PubMed  Google Scholar 

  • Maudoux A, Lefebvre P, Cabay J-E et al (2012) Auditory resting-state network connectivity in tinnitus: a functional MRI study. PLoS ONE 7:e36222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melcher JR, Sigalovsky IS, Guinan JJ, Levine RA (2000) Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol 83:1058–1072

    CAS  PubMed  Google Scholar 

  • Middleton JW, Kiritani T, Pedersen C, et al (2011) Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci 108:7601–7606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moerel M, De Martino F, Formisano E (2012) Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity. J Neurosci 32:14205–14216

    Article  CAS  PubMed  Google Scholar 

  • Mühlau M, Rauschecker JP, Oestreicher E, et al (2006) Structural brain changes in tinnitus. Cereb Cortex 16:1283–1288.

    Article  PubMed  Google Scholar 

  • Newman CW, Jacobson GP, Spitzer JB (1996) Development of the tinnitus handicap inventory. Arch Otolaryngol Head Neck Surg 122:143–148

    Article  CAS  PubMed  Google Scholar 

  • Norena A, Micheyl C, Chéry-Croze S, Collet L (2002) Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol Neurootol 7:358–369

    Article  PubMed  Google Scholar 

  • Noreña AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–153

    Article  PubMed  Google Scholar 

  • Noreña AJ, Eggermont JJ (2005) Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J Neurosci 25:699–705

    Article  PubMed  Google Scholar 

  • Okamoto H, Stracke H, Stoll W, Pantev C (2010) Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proc Natl Acad Sci 107:1207–1210.

    Article  CAS  PubMed  Google Scholar 

  • Rajan R, Irvine DR, Wise LZ, Heil P (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol 338(1):17–49

    Article  CAS  PubMed  Google Scholar 

  • Richardson BD, Brozoski TJ, Ling LL, Caspary DM (2012) Targeting inhibitory neurotransmission in tinnitus. Brain Res 1485:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. NeuroImage 6:288–304.

    Article  CAS  PubMed  Google Scholar 

  • Roberts LE, Eggermont JJ, Caspary DM et al (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30:14972–14979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saenz M, Langers DRM (2014) Tonotopic mapping of human auditory cortex. Hear Res 307:42–52

    Article  PubMed  Google Scholar 

  • Salloum RH, Sandridge S, Patton DJ, Stillitano G, Dawson G, Niforatos J, Santiago L, Kaltenbach JA (2016) Untangling the effects of tinnitus and hypersensitivity to sound (hyperacusis) in the gap detection test. Hear Res 331:92–100

    Article  CAS  PubMed  Google Scholar 

  • Salomon R, Darulova J, Narsude M, van der Zwaag W (2014) Comparison of an 8-channel and a 32-channel coil for high-resolution FMRI at 7 T. Brain Topogr 27:209–212

    Article  PubMed  Google Scholar 

  • Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D (2010) Mapping human somatosensory cortex in individual subjects with 7 T functional MRI. J Neurophysiol 103:2544–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457

    Article  CAS  PubMed  Google Scholar 

  • Schecklmann M, Vielsmeier V, Steffens T et al (2012) Relationship between audiometric slope and tinnitus pitch in tinnitus patients: insights into the mechanisms of tinnitus generation. PLoS ONE

  • Scheffler K, Bilecen D, Schmid N et al (1998) Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging. Cereb Cortex 8:156–163

    Article  CAS  PubMed  Google Scholar 

  • Schmidt SA, Akrofi K, Carpenter-Thompson JR, Husain FT (2013) Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss. PLoS ONE 8:e76488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider P, Andermann M, Wengenroth M, et al (2009) Reduced volume of Heschl’s gyrus in tinnitus. NeuroImage 45:927–939.

    Article  PubMed  Google Scholar 

  • Schreiner CE, Polley DB (2014) Auditory map plasticity: Diversity in causes and consequences. Curr Opin Neurobiol 24:143–156

    Article  CAS  PubMed  Google Scholar 

  • Sedley W, Teki S, Kumar S, Barnes GR, Bamiou D-E, Griffiths TD (2012) Signle-subject oscillatory gamma responses in tinnitus. Brain 135(10):3089–3100

    Article  PubMed  PubMed Central  Google Scholar 

  • Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38

    Article  PubMed  Google Scholar 

  • Seydell-Greenwald A, Leaver AM, Turesky TK et al (2012) Functional MRI evidence for a role of ventral prefrontal cortex in tinnitus. Brain Res 1485:22–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldrake J, Diehl PU, Schaette R (2015) Audiometric characteristics of hyperacusis patients. Front Neurol 15(6):105

    Google Scholar 

  • Tass PA, Adamchic I, Freund H-J et al (2012) Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci 30:137–159

    PubMed  Google Scholar 

  • Thomas JM, Huber E, Stecker GC, et al (2015) Population receptive field estimates of human auditory cortex. NeuroImage 105:428–439.

    Article  PubMed  Google Scholar 

  • Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107

    Article  CAS  PubMed  Google Scholar 

  • Van De Ville D, Jhooti P, Haas T, et al (2012) Recovery of the default mode network after demanding neurofeedback training occurs in spatio-temporally segregated subnetworks. NeuroImage 63:1775–1781.

    Article  Google Scholar 

  • van der Zwaag W, Francis S, Head K, et al (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. NeuroImage 47:1425–1434.

    Article  PubMed  Google Scholar 

  • van der Zwaag W, Gentile G, Gruetter R, et al (2011) Where sound position influences sound object representations: A 7-T fMRI study. NeuroImage 54:1803–1811.

    Article  PubMed  Google Scholar 

  • van der Zwaag W, Kusters R, Magill A, et al (2013) Digit somatotopy in the human cerebellum: a 7 T fMRI study. NeuroImage 67:354–362.

    Article  PubMed  Google Scholar 

  • van der Zwaag W, Schäfer A, Marques JP et al (2015) Recent applications of UHF-MRI in the study of human brain function and structure: a review. NMR Biomed 29(9):1274–1288

    Article  PubMed  Google Scholar 

  • Weisz N, Müller S, Schlee W et al (2007) The neural code of auditory phantom perception. J Neurosci 27:1479–1484

    Article  CAS  PubMed  Google Scholar 

  • Yacoub E, Shmuel A, Logothetis N, Uğurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 T. NeuroImage 37:1161–1177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Weiner BD, Zhang LS, et al (2011) Homeostatic plasticity drives tinnitus perception in an animal model. Proc Natl Acad Sci 108:14974–14979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Swiss National Science Foundation Grant 320030_143989 and by the Centre d’Imagerie BioMédicale (CIBM) of the Université de Lausanne, Université de Genève, Hôpitaux Universitaires de Genève, Lausanne University Hospital, École Polytechnique Fédérale de Lausanne, and the Leenaards and Louis-Jeantet Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naghmeh Ghazaleh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazaleh, N., Zwaag, W.v.d., Clarke, S. et al. High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus. Brain Topogr 30, 685–697 (2017). https://doi.org/10.1007/s10548-017-0547-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-017-0547-1

Keywords

Navigation