Skip to main content
Log in

Real-time fMRI feedback training may improve chronic tinnitus

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Tinnitus consists of a more or less constant aversive tone or noise and is associated with excess auditory activation. Transient distortion of this activation (repetitive transcranial magnetic stimulation, rTMS) may improve tinnitus. Recently proposed operant training in real-time functional magnetic resonance imaging (rtfMRI) neurofeedback allows voluntary modification of specific circumscribed neuronal activations. Combining these observations, we investigated whether patients suffering from tinnitus can (1) learn to voluntarily reduce activation of the auditory system by rtfMRI neurofeedback and whether (2) successful learning improves tinnitus symptoms.

Methods

Six participants with chronic tinnitus were included. First, location of the individual auditory cortex was determined in a standard fMRI auditory block-design localizer. Then, participants were trained to voluntarily reduce the auditory activation (rtfMRI) with visual biofeedback of the current auditory activation.

Results

Auditory activation significantly decreased after rtfMRI neurofeedback. This reduced the subjective tinnitus in two of six participants.

Conclusion

These preliminary results suggest that tinnitus patients learn to voluntarily reduce spatially specific auditory activations by rtfMRI neurofeedback and that this may reduce tinnitus symptoms. Optimized training protocols (frequency, duration, etc.) may further improve the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BOLD:

blood oxygenation level dependent

DLPFC:

dorso-lateral prefrontal cortex

EEG:

electroencephalography

EPI:

echoplanar imaging

fMRI:

functional magnetic resonance imaging

rtfMRI:

real-time functional magnetic resonance imaging

rTMS:

repetitive transcranial magnetic stimulation

VLPFC:

ventro-lateral prefrontal cortex

References

  1. Heller AJ (2003) Classification and epidemiology of tinnitus. Otolaryngol Clin North Am 2:239–248

    Article  Google Scholar 

  2. Dobie RA (2003) Depression and tinnitus. Otolaryngol Clin North Am 2:383–388

    Article  Google Scholar 

  3. Dobie RA (1999) A review of randomized clinical trials in tinnitus. Laryngoscope 8:1202–1211

    Article  Google Scholar 

  4. Muhlnickel W, Elbert T, Taub E et al (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci U S A 17:10340–10343

    Article  Google Scholar 

  5. Andersson G, Lyttkens L, Hirvela C et al (2000) Regional cerebral blood flow during tinnitus: a PET case study with lidocaine and auditory stimulation. Acta Otolaryngol 8:967–972

    Article  Google Scholar 

  6. Kleinjung T, Eichhammer P, Langguth B et al (2005) Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus. Otolaryngol Head Neck Surg 4:566–569

    Article  Google Scholar 

  7. Rossi S, De Capua A, Ulivelli M et al (2007) Effects of repetitive transcranial magnetic stimulation on chronic tinnitus. A randomised, cross over, double blind, placebo-controlled study. J Neurol, Neurosurg Psychiatry

  8. Plewnia C, Reimold M, Najib A et al (2007) Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp 3:238–246

    Article  Google Scholar 

  9. Miller NE (1975) Clinical applications of biofeedback: Voluntary control of heart rate, rhythm, and blood pressure. In: Russel HI (ed) New horizons in cardiovascular practice. University Park Press, Baltimore, pp 239–249

    Google Scholar 

  10. Kubler A, Kotchoubey B, Hinterberger T et al (1999) The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp Brain Res 2:223–232

    Google Scholar 

  11. Birbaumer N, Ghanayim N, Hinterberger T et al (1999) A spelling device for the paralysed. Nature 6725:297–298

    Article  Google Scholar 

  12. Weiskopf N, Veit R, Erb M et al (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 3:577–586

    Article  Google Scholar 

  13. Weiskopf N, Scharnowski F, Veit R et al (2004) Self-regulation of local brain activity using real-time functional magnetic resonance imaging (fMRI). J Physiol Paris 4–6:357–373

    Article  Google Scholar 

  14. Weiskopf N, Sitaram R, Josephs O et al (2007) Real-time functional magnetic resonance imaging: methods and applications. Magn Reson Imaging 6:989–1003

    Article  Google Scholar 

  15. deCharms RC, Maeda F, Glover GH et al (2005) Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A 51:18626–18631

    Article  Google Scholar 

  16. deCharms RC (2007) Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends Cogn Sci 11:473–481

    Article  PubMed  Google Scholar 

  17. Zenner HP, De Maddalena H (2005) Validity and reliability study of three tinnitus self-assessment scales: loudness, annoyance and change. Acta oto-laryngologica 11:1184–1188

    Article  Google Scholar 

  18. Goebel G, Hiller W (1994) [The tinnitus questionnaire. A standard instrument for grading the degree of tinnitus. Results of a multicenter study with the tinnitus questionnaire]. HNO 3:166–172

    Google Scholar 

  19. Seifritz E, Esposito F, Hennel F et al (2002) Spatiotemporal pattern of neural processing in the human auditory cortex. Science 5587:1706–1708

    Article  Google Scholar 

  20. Caria A, Veit R, Sitaram R et al (2007) Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage 3:1238–1246

    Article  Google Scholar 

  21. Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 4:537–541

    Article  Google Scholar 

  22. Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 37:13848–13853

    Article  Google Scholar 

  23. Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 2:676–682

    Article  Google Scholar 

  24. Ochsner KN, Ray RD, Cooper JC et al (2004) For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage 2:483–499

    Article  Google Scholar 

  25. Eippert F, Veit R, Weiskopf N et al (2007) Regulation of emotional responses elicited by threat-related stimuli. Hum Brain Mapp 5:409–423

    Article  Google Scholar 

  26. Critchley HD, Wiens S, Rotshtein P et al (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 2:189–195

    Article  Google Scholar 

  27. Critchley HD, Melmed RN, Featherstone E et al (2002) Volitional control of autonomic arousal: a functional magnetic resonance study. Neuroimage 4:909–919

    Article  Google Scholar 

  28. Sitaram R, Caria A, Veit R et al (2007) FMRI brain-computer interface: a tool for neuroscientific research and treatment. Comput Intell Neurosci 25487

  29. Gosepath K, Nafe B, Ziegler E et al (2001) [Neurofeedback in therapy of tinnitus]. HNO 1:29–35

    Article  Google Scholar 

  30. Dohrmann K, Weisz N, Schlee W et al (2007) Neurofeedback for treating tinnitus. Prog Brain Res 473–485

  31. Nelson LA (2007) The role of biofeedback in stroke rehabilitation: past and future directions. Top Stroke Rehabil 4:59–66

    Article  Google Scholar 

  32. Bilecen D, Scheffler K, Schmid N et al (1998) Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI. Hear Res 1–2:19–27

    Article  Google Scholar 

  33. Cohen ER, Ugurbil K, Kim SG (2002) Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 9:1042–1053

    Article  Google Scholar 

Download references

Acknowledgements

We thank all subjects for participation in the study.

Conflict of interest

No conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Haller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller, S., Birbaumer, N. & Veit, R. Real-time fMRI feedback training may improve chronic tinnitus. Eur Radiol 20, 696–703 (2010). https://doi.org/10.1007/s00330-009-1595-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1595-z

Keywords

Navigation