Skip to main content
Log in

Acoustic micromixing increases antibody-antigen binding in immunoassays

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Sound wave-assisted acoustic micromixing has been shown to increase the binding of molecules in small volumes (10–100 μL) where effective mixing is difficult to achieve through conventional techniques. The aim of this work is to study whether acoustic micromixing can increase the binding efficiency of antibodies to their antigens, a reaction that forms the basis of immunoassays, including enzyme-linked immunosorbent assay (ELISA). Using a procedure from a general ELISA and immobilizing an antigen on wells of 96-well plates, it was found that acoustic micromixing at 125–150 Hz increased the initial rate of antibody-antigen binding by over 80 % and the total binding at the end point (i.e., 45 min) by over 50 %. As a result, acoustic micromixing achieved a binding level in 9 min that would otherwise take 45 min on a standard platform rocking mixer. Therefore acoustic micromixing has the potential to increase the detection sensitivity of ELISA as well as shorten the antigen-antibody binding times from typically 45–60 min to 15 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • B. Acevedo, Y. Perera, M. Ruiz, G. Rojas, J. Benitez, M. Ayala, J. Gavilondo, Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clin. Chim. Acta 317(1–2), 55–63 (2002)

    Article  Google Scholar 

  • D. Ahmed, X. Mao, B.K. Juluri, T.J. Huang, A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid. Nanofluid. 7(5), 727–731 (2009)

    Article  Google Scholar 

  • W.C. Boon, K. Petkovic-Duran, K. White, E. Tucker, A. Albiston, R. Manasseh, M.K. Horne, T.D. Aumann, Acoustic microstreaming increases the efficiency of reverse transcription reactions comprising single-cell quantities of RNA. Biotechniques 50(2), 116–119 (2011a)

  • W.C. Boon, K. Petkovic-Duran, Y. Zhu, R. Manasseh, MK. Horne, and Aumann TD. Increasing cDNA yields from single-cell quantities of mRNA in standard laboratory reverse transcriptase reactions using acoustic microstreaming. J. Vis. Exp.: JoVE(53):e3144–e3144 (2011b)

  • O. Ducloux, E. Galopin, F. Zoueshtiagh, A. Merlen, V. Thomy, Enhancement of biosensing performance in a droplet-based bioreactor by in situ microstreaming. Biomicrofluidics 4(1), 11102 (2010)

    Article  Google Scholar 

  • E. Engvall, P. Perlmann, Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin-G. Immunochemistry 8(9), 871–874 (1971)

    Article  Google Scholar 

  • Y.Z. Fu, R. Yuan, Y.Q. Chai, L. Zhou, Y. Zhang, Coupling of a reagentless electrochemical DNA biosensor with conducting polymer film and nanocomposite as matrices for the detection of the Hiv DNA sequences. Anal. Lett. 39(3), 467–482 (2006)

    Article  Google Scholar 

  • E. Galopin, M. Beaugeois, B. Pinchemel, J.-C. Camart, M.B. Ouazaoui, V. Thomy, SPR biosensing coupled to a digital microfluidic microstreaming system. Biosens. Bioelectron. 23(5), 746–750 (2007)

    Article  Google Scholar 

  • J.F.T. Griffin, E. Spittle, C.R. Rodgers, S. Liggett, M. Cooper, D. Bakker, J.P. Bannantine, Immunoglobulin G1 enzyme-linked immunosorbent assay for diagnosis of Johne’s disease in red deer (Cervus elaphus). Clin. Diagn. Lab. Immunol. 12(12), 1401–1409 (2005)

    Google Scholar 

  • V. Hessel, H. Lowe, F. Schonfeld, Micromixers - a review on passive and active mixing principles. Chem. Eng. Sci. 60(8–9), 2479–2501 (2005)

    Article  Google Scholar 

  • G.S. Jeong, S. Chung, C.-B. Kim, S.-H. Lee, Applications of micromixing technology. Analyst 135(3), 460–473 (2010)

    Article  Google Scholar 

  • K. Kourentzi, M. Srinivasan, S.J. Smith-Gill, R.C. Willson, Conformational flexibility and kinetic complexity in antibody-antigen interaction. J. Mol. Recognit. 21(2), 114–121 (2008)

    Article  Google Scholar 

  • S.X. Leng, J.E. McElhaney, J.D. Walston, D. Xie, N.S. Fedarko, G.A. Kuchel, ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J. Gerontol. Ser. Biol. Sci. Med. Sci. 63(8), 879–884 (2008)

    Article  Google Scholar 

  • R.M. Lequin, Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin. Chem. 51(12), 2415–2418 (2005)

    Article  Google Scholar 

  • M.A. Levesque, H. Yu, G.M. Clark, E.P. Diamandis, Enzyme-linked immunoabsorbent assay-detected p53 protein accumulation: A prognostic factor in a large breast cancer cohort. J. Clin. Oncol. 16(8), 2641–2650 (1998)

    Google Scholar 

  • C.A. Lipschultz, A. Yee, S. Mohan, Y.L. Li, S.J. Smith-Gill, Temperature differentially affects encounter and docking thermodynamics of antibody-antigen association. J. Mol. Recognit. 15(1), 44–52 (2002)

    Article  Google Scholar 

  • R.H. Liu, R. Lenigk, R.L. Druyor-Sanchez, J.N. Yang, P. Grodzinski, Hybridization enhancement using cavitation microstreaming. Anal. Chem. 75(8), 1911–1917 (2003a)

    Article  Google Scholar 

  • R.H. Liu, R. Lenigk, P. Grodzinski, Acoustic micromixer for enhancement of DNA biochip systems. J. Microlithogr. Microfabric. Microsyst. 2(3), 178–184 (2003b)

    Google Scholar 

  • H. Nygren, M. Werthen, M. Stenberg, Kinetics of antibody-binding to solid-phase-immobilized antigen-effect of diffusion rate limitation and steric interaction. J. Immunol. Methods 101(1), 63–71 (1987)

    Article  Google Scholar 

  • K. Petkovic-Duran, R. Manasseh, Y. Zhu, A. Ooi, Chaotic micromixing in open wells using audio-frequency acoustic microstreaming. Biotechniques 47(4), 827–831 (2009)

    Google Scholar 

  • A. Renaudin, V. Chabot, E. Grondin, V. Aimez, and P.G. Charette. Accelerated binding kinetics by surface acoustic waves (SAW) micromixing in surface plasmon resonance (SPR) system for biodetection. Microfluidics Biomems Med. Microsyst. Ix 7929 (2011)

  • R.D. Soltis, D. Hasz, Studies on the nature of intermolecular bonding in antigen-antibody complexes. Immunology 46(1), 175–181 (1982)

    Google Scholar 

  • M. Stenberg, H. Nygren, Kinetics of antigen-antibody reactions at solid-liquid interfaces. J. Immunol. Methods 113(1), 3–15 (1988)

    Article  Google Scholar 

  • M.G. Taylor, A. Rajpal, J.F. Kirsch, Kinetic epitope mapping of the chicken lysozyme center dot HyHEL-10 Fab complex: delineation of docking trajectories. Protein Sci. 7(9), 1857–1867 (1998)

    Article  Google Scholar 

  • C.J. Vanoss, R.J. Good, M.K. Chaudhury, Nature of the antigen-antibody interaction-primary and secondary bonds-optimal conditions for association and dissociation. J. Chromatogr. 376, 111–119 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CSIRO Manufacturing Flagship for funding this research.

Compliance with Ethical Standards

Conflicts of Interest

No potential conflicts of interest

Research involving Human Participants and/or Animals

Not applicable because no human or animal participants are involved in the study.

Informed consent

Not applicable because no human participants are involved in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Gao or Yonggang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Tran, P., Petkovic-Duran, K. et al. Acoustic micromixing increases antibody-antigen binding in immunoassays. Biomed Microdevices 17, 79 (2015). https://doi.org/10.1007/s10544-015-9987-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-9987-0

Keywords

Navigation