Skip to main content

Surface Acoustic Wave (SAW) Biosensors: Coupling of Sensing Layers and Measurement

  • Protocol
  • First Online:
Microfluidic Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

Surface acoustic wave (SAW) devices based on horizontally polarized surface shear waves enable direct and label-free detection of proteins in real time. Signal response changes result mainly from mass increase and viscoelasticity changes on the device surface. With an appropriate sensor configuration all types of binding reactions can be detected by determining resonant frequency changes of an oscillator. To create a biosensor, SAW devices have to be coated with a sensing layer binding specifically to the analyte. Intermediate hydrogel layers used within the coating have been proven to be very suitable to easily immobilize capture molecules or ligands corresponding to the analyte. However, aside from mass increase due to analyte binding, the SAW signal response in a subsequent binding experiment strongly depends on the morphology of the sensing layer, as this may lead to different relative changes of viscoelasticity. Bearing these points in mind, we present two basic biosensor coating procedures, one with immobilized capture molecule and a second with immobilized ligand, allowing reliable SAW biosensor signal responses in subsequent binding assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flory CA, Baer RL (1987) Surface transverse wave mode analysis and coupling to interdigital transducers. IEEE proc Ultrason Symp:313–318

    Google Scholar 

  2. Shiokawa S, Moriizumi T (1988) Design of SAW sensor in liquid. Jpn J Appl Phys Suppl 27-1:142–144

    Google Scholar 

  3. Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519

    Article  Google Scholar 

  4. Weiss W et al (1998) Viscoelastic behavior of antibody films on a shear horizontal acoustic surface wave sensor. Anal Chem 70:2881–2887

    Article  CAS  Google Scholar 

  5. Länge K, Rapp M (2008) Influence of intermediate aminodextran layers on the signal response of surface acoustic wave biosensors. Anal Biochem 377:170–175

    Article  Google Scholar 

  6. Länge K, Rapp M (2009) Influence of intermediate hydrogel layer and amount of binding sites on the signal response of surface acoustic wave biosensors. Sens Act B Chem 142:39–43

    Article  Google Scholar 

  7. Länge K et al (2003) A surface acoustic wave biosensor concept with low flow cell volumes for label-free detection. Anal Chem 75:5561–5566

    Article  Google Scholar 

  8. Gizeli E et al (1997) Antibody binding to a functionalized supported lipid layer: a direct acoustic immunosensor. Anal Chem 69:4808–4813

    Article  CAS  Google Scholar 

  9. Gronewold TMA et al (2006) Discrimination of single mutations in cancer-related gene fragments with a surface acoustic wave sensor. Anal Chem 78:4865–4871

    Article  CAS  Google Scholar 

  10. Masson JF et al (2004) Preparation of analyte-sensitive polymeric supports for biochemical sensors. Talanta 64:716–725

    Article  CAS  Google Scholar 

  11. Gedig ET (2008) In: Schasfoort RBM, Tudos AJ (eds) Handbook of surface plasmon resonance, 1st edn. RSC, Cambridge

    Google Scholar 

  12. Bender F et al (2004) On-line monitoring of polymer deposition for tailoring the waveguide characteristics of Love-wave biosensors. Langmuir 20:2315–2319

    Article  CAS  Google Scholar 

  13. Länge K, Grimm S, Rapp M (2007) Chemical modification of parylene C coatings for SAW biosensors. Sens Act B Chem 125:441–446

    Article  Google Scholar 

  14. Löfas S, Johnsson B (1990) A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J Chem Soc Chem Commun:1526–1528

    Google Scholar 

  15. Österberg E et al (1995) Protein-rejecting ability of surface-bound dextran in end-on and side-on configurations: comparison to PEG. J Biomed Mater Res 29:741–747

    Article  Google Scholar 

  16. McHale G et al (2000) Acoustic wave–liquid interactions. Mat Sci Eng C 12:17–22

    Article  Google Scholar 

  17. Lucklum R, Hauptmann P (2006) Acoustic microsensors—the challenge behind microgravimetry. Anal Bioanal Chem 384:667–682

    Article  CAS  Google Scholar 

  18. Länge K, Gruhl FJ, Rapp M (2009) Influence of preparative carboxylation steps on the analyte response of an acoustic biosensor. IEEE Sens J 9:2033–2034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Länge, K., Gruhl, F.J., Rapp, M. (2013). Surface Acoustic Wave (SAW) Biosensors: Coupling of Sensing Layers and Measurement. In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_31

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics