Skip to main content
Log in

Magnetic sensor for arterial distension and blood pressure monitoring

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A novel sensor for measuring arterial distension, pulse and pressure waveform is developed and evaluated. The system consists of a magnetic sensor which is applied and fixed to arterial vessels without any blood vessel constriction, hence avoiding stenosis. The measurement principle could be validated by in vitro experiments on silicone tubes, and by in vivo experiments in an animal model, thereby indicating the non-linear viscoelastic characteristics of real blood vessels. The sensor is capable to provide absolute measurements of the dynamically varying arterial diameter. By calibrating the sensor, a long-term monitoring system for continuously measuring blood pressure and other cardiovascular parameters could be developed based on the method described. This will improve diagnostics for high risk patients and enable a better, specific treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • D.K. Arnett, L.E. Chambless, H. Kim, G.W. Evans, W. Riley, Variability in ultrasonic measurements of arterial stiffness in the atherosclerosis risk in communities study. Ultrasound Med. Biol. 25(2), 175–180 (1999)

    Article  Google Scholar 

  • K. Ashok, P.B. Jena, D. Ritu, Magnet as a dental material - an overview. Trends in Biomater. and Artif. organs. 16(2), 73–80 (2003)

    Google Scholar 

  • D.H. Bergel, The static elastic properties of the arterial wall. The J. Physiology. 156(3), 445–457 (1961). PMID: 16992075 PMCID: PMC1359896

    Google Scholar 

  • P. Bingger, M. Zens, P. Woias, Highly flexible capacitive strain gauge for continuous long-term blood pressure monitoring. Biomed. Microdevices. 14(3), 573–581 (2012)

    Article  Google Scholar 

  • T. Boretius. Time - a transverse intrafascicular multichannel electrode. PhD thesis,Laboratory for Biomedical Microtechnology (University of Freiburg, Germany, 2012)

    Google Scholar 

  • P. Cong, D. Young, B. Hoit, W. Ko, Novel long-term implantable blood pressure monitoring system with reduced baseline drift. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ’06 (2006)

  • R.H. Cox, Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube. Biophys. J. 8(6), 691–709 (1968)

    Article  Google Scholar 

  • E.P. Furlani, Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications: Materials, Analysis and Applications. Academic Pr Inc (2001)

  • T. Kawasaki, S. Sasayama, S.I. Yagi, T. Asakawa, T. Hirai, Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovascular Research. 21(9), 678–687 (1987). PMID: 3328650

    Article  Google Scholar 

  • N. Lago, K. Yoshida, K.P. Koch, X. Navarro, Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans. Biomed. Eng. 54(2), 281–290 (2007)

    Article  Google Scholar 

  • Medpac. Report to the congress: Promoting greater efficiency in medicare (2007)

  • Y. Nagai, J.L. Fleg, M.K. Kemper, T.M. Rywik, C.J. Earley, E. Metter, Carotid arterial stiffness as a surrogate for aortic stiffness: relationship between carotid artery pressure\(\hat {a}\check {A}\c {S}\)strain elastic modulus and aortic pulse wave velocity. Ultrasound Med. Biol. 25(2), 181–188 (1999)

    Article  Google Scholar 

  • D.L. Newman, N.L.R. Bowden, R.G. Gosling, The dynamic and static elastic response of the abdominal aorta of the do. Cardiovasc. Res. 9(5), 679–684 (1975). PMID: 1201576

    Article  Google Scholar 

  • W.W. Nichols, M.F. O’Rourke, C. Vlachopoulos. McDonald’s Blood Flow in Arteries, 6th ed: Theoretical, Experimental and Clinical Principles, 6th edn (Hodder Arnold, 2011)

  • E. O’Brien, B. Waeber, G. Parati, J. Staessen, M.G. Myers, Blood pressure measuring devices: recommendations of the european society of hypertension. BMJ : Br. Med. J. 322(7285), 531–536 (2001). PMID: 11230071 PMCID: PMC1119736

    Article  Google Scholar 

  • J. Ordonez, C. Boehler, M. Schuettler, T. Stieglitz, Improved polyimide thin-film electrodes for neural implants. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2012)

  • G. Park, H.J. Chung, K. Kim, S.A. Lim, J. Kim, Y.S. Kim, Y. Liu, W.H. Yeo, R.H. Kim, S.S. Kim, J.S. Kim, Y.H. Jung, T. Kim, C. Yee, J.A. Rogers, K.M. Lee, Immunologic and tissue biocompatibility of Flexible/Stretchable electronics and optoelectronics. Advanced Healthcare Materials (2013)

  • J.H. Park, S. Davis, Y.K. Yoon, M. Prausnitz, M. Allen, Micromachined biodegradable microstructures. In: IEEE The Sixteenth Annual International Conference on Micro Electro Mechanical Systems,MEMS-03 Kyoto pp 371–374 (2003)

  • A.L. Pauca, M.F. OâĂŹRourke, N.D. Kon, Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertens. 38(4), 932–937 (2001). PMID:11641312

    Article  Google Scholar 

  • L.H. Peterson, R.E. Jensen, J. Parnell, Mechanical properties of arteries in vivo. Circ. Res. 8(3), 622–639 (1960)

    Article  Google Scholar 

  • R. Richardson, J. Miller, W. Reichert, Polyimides as biomaterials: preliminary biocompatibility testing. Biomater. 14(8), 627–635 (1993)

    Article  Google Scholar 

  • W.A. Riley, R.W. Barnes, G.W. Evans, G.L. Burke, Ultrasonic measurement of the elastic modulus of the common carotid artery. the atherosclerosis risk in communities (ARIC) study. Stroke; a J. Cereb. Circ. 23(7), 952–956 (1992). PMID:1615543

    Article  Google Scholar 

  • B. Rubehn, T. Stieglitz, In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomater. 31(13), 3449–3458 (2010)

    Article  Google Scholar 

  • J. Ruhhammer, D. Ruh, K. Foerster, C. Heilmann, F. Beyersdorf, A. Barker, B. Jung, A. Seifert, F. Goldschmidtboeing, P. Woias, Arterial strain measurement by implantable capacitive sensor without vessel constriction. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. PMID:23365947 (2012)

  • K.H. Shin, C.Y. Moon, T.H. Lee, C.H. Lim, Y.J. Kim, Implantable flexible wireless pressure sensor module. In: Proceedings of IEEE Sensors,pp 844–847 vol.2 (2004)

  • J.S. Song, S. Lee, S.H. Jung, G.C. Cha, M.S. Mun, Improved biocompatibility of parylene-c films prepared by chemical vapor deposition and the subsequent plasma treatment. J. Appl. Polym. Sci. 112(6), 3677–3685 (2009)

    Article  Google Scholar 

  • D. Steinhaus, D.W. Reynolds, F. Gadler, G.N. Kay, M.F. Hess, T. Bennett, F.T.C. Investigators, Implant experience with an implantable hemodynamic monitor for the management of symptomatic heart failure. Pacing Clin. Electrophysiol. 28(8), 747–753 (2005)

    Article  Google Scholar 

  • M. Theodor, J. Fiala, D. Ruh, K. FÃũrster, C. Heilmann, F. Beyersdorf, Y. Manoli, H. Zappe, A. Seifert, Implantable accelerometer system for the determination of blood pressure using reflected wave transit time. Sensors Actuators A Phys. 206, 151–158 (2014)

    Article  Google Scholar 

  • D. Valdez, H.T. Banks, M.A. Haider, D. Bia, Y. Zocalo, R.L. Armentano, M.S. Olufsen, Viscoelastic mmodel for passive arterial wall dynamics. Adv. Appl. Math. Mech. 1(2), 151–165 (2009)

    Google Scholar 

  • World Health Organization. WHO | global status report on noncommunicable diseases 2010 (2011)

  • B. Ziaie, K. Najafi, An implantable microsystem for tonometric blood pressure measurement. Biomed. Microdevices. 3(4), 285–292 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Ruhhammer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruhhammer, J., Herbstritt, T., Ruh, D. et al. Magnetic sensor for arterial distension and blood pressure monitoring. Biomed Microdevices 16, 815–827 (2014). https://doi.org/10.1007/s10544-014-9885-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9885-x

Keywords

Navigation