Skip to main content

Advertisement

Log in

Biogeochemical shifts in hydrologically divergent taiga lakes in response to late Holocene climate fluctuations

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We examined functional climate responses of two small taiga lakes in eastern Scandinavia with the aim to compare biogeochemical shifts in the hydrologically different basins over the past 3500 years. Sediment cores from one seepage and one drainage lake were studied for C and N elemental and stable isotopic composition to track organic matter origin, elemental cycles, and trophic structure. Fossil Cladocera assemblages and functional grouping of Chironomidae were determined to understand food web structure, biotic interactions, and habitat quality. In the seepage lake, the warm Medieval Climate Anomaly (MCA, ~1400 to 1000 cal BP) induced thermal stratification, hypolimnetic anoxia, and increased in-lake production, similar to the 20th century development. The Neoglacial cooling, with a high precipitation period at ~2200 to 2000 cal BP, and the cold Little Ice Age (LIA, ~700 to 300 cal BP) increased terrestrial carbon inputs and reduced productivity. The drainage lake was shallow, productive, and humic during the warm and dry period at ~4000 to 3000 cal BP but cooler and moister climate induced higher lake level with stratification and hypolimnetic anoxia around 2500 cal BP. The MCA was characterized by increased in-lake production and altered food web structure, as the keystone zooplankton taxon Daphnia was extirpated, and LIA by intensified anoxia and reduced planktonic production due to longer ice-cover period. Coherent responses to climate warming included increased planktonic production, stronger stratification, and hypolimnetic anoxia with anaerobic processes in both lakes, but responses to moisture were site-specific and dependent on basin hydromorphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  Google Scholar 

  • Bjerring R, Becares E, Declerck S, Gross EM, Hansson L-A, Kairesalo T, Nykänen M, Halkiewichz A, Kornijow R, Conde-Porcuna JM, Sereflis M, Nõges T, Moss B, Amsinck SL, Odgaard BV, Jeppesen E (2009) Subfossil Cladocera in relation to contemporary environmental variables in 54 Pan-European lakes. Freshw Biol 54:2401–2417

    Article  Google Scholar 

  • Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221

    Article  Google Scholar 

  • Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of Palaeoarctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London

  • Bunting L, Leavitt PR, Weidman RP, Vinebrooke RD (2010) Regulation of the nitrogen biogeochemistry of mountain lakes by subsidies of terrestrial dissolved organic matter and the implications for climate studies. Limnol Oceanogr 55:333–345

    Article  Google Scholar 

  • Cloern JE, Canuel EA, Harris D (2002) Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnol Oceanogr 47:713–729

    Article  Google Scholar 

  • de Eyto E, Irvine K (2001) The response of three chydorid species to temperature, pH and food. Hydrobiologia 459(1–3):165–172

    Article  Google Scholar 

  • de Kluijver A, Yu J, Houtekamer M, Middelburg JJ, Liu Z (2012) Cyanobacteria as a carbon source for zooplankton in eutrophic Lake Taihu, China, measured by 13C labeling and fatty acid biomarkers. Limnol Oceanogr 57:1245–1254

    Article  Google Scholar 

  • DeMott WR, Kerfoot WC (1982a) Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 27:1949–1966

    Article  Google Scholar 

  • DeMott WR, Kerfoot WC (1982b) Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63:1949–1966

    Article  Google Scholar 

  • DeSellas AM, Paterson AM, Sweetman JN, Smol JP (2011) Assessing the effects of multiple environmental stressors on zooplankton assemblages in Boreal Shield lakes since pre-industrial times. J Limnol 70:41–56

    Article  Google Scholar 

  • Engstrom DR, Fritz SC, Almendinger JE, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–166

    Article  Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412:785

    Article  Google Scholar 

  • Fryer G (1968) Evolution and adaptive radiation in the Chydoridae (Crustacea: Cladocera): a study in comparative functional morphology and ecology. Philos Trans Royal Soc B 254:221–384

    Article  Google Scholar 

  • Häder DP, Williamson CE, Wängberg SÅ, Rautio M, Rose KC, Gao K, Helbling EW, Sinha RP, Worrest R (2015) Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem Photobiol Sci 14:108–126

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Amsinck S, Landkildehus F, Lauridsen T, Mitchell SF (2002) Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. J Paleolimnol 27:133–143

    Article  Google Scholar 

  • Jeziorski A, Paterson AM, Smol JP (2012) Crustacean zooplankton sedimentary remains from calcium-poor lakes: complex responses to threshold concentrations. Aquat Sci 74:121–131

    Article  Google Scholar 

  • Kling GW (2000) A lake’s life is not its own. Nature 408:149–150

    Article  Google Scholar 

  • Kling GW, Kipphut GW, Miller MM, O’Brien WJ (2000) Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshw Biol 43:477–497

    Article  Google Scholar 

  • Kurek J, Korosi JB, Jeziorski A, Smol JP (2010) Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. J Paleolimnol 44:603–612

    Article  Google Scholar 

  • Law AC, Anderson NJ, McGowan S (2015) Spatial and temporal variability of lake ontogeny in south-western Greenland. Quat Sci Rev 126:1–16

    Article  Google Scholar 

  • Leavitt PR, Fritz SC, Anderson NJ, Baker PA, Blenckner T, Bunting L, Catalan J, Conley DJ, Hobbs WO, Jeppesen E, Korhola A, McGowan S, Rühland K, Rusak A, Simpson GL, Solovieva N, Werne J (2009) Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnol Oceanogr 54:2330–2348

    Article  Google Scholar 

  • Luoto TP (2010) Hydrological change in lakes inferred from midge assemblages through use of an intralake calibration set. Ecol Monogr 80:303–329

    Article  Google Scholar 

  • Luoto TP (2013) Dystrophy in determining midge community composition in boreal lakes. Écoscience 20:391–398

    Article  Google Scholar 

  • Luoto TP, Helama S (2010) Palaeoclimatological and palaeolimnological records from fossil midges and tree-rings: the role of the North Atlantic Oscillation in eastern Finland through the Medieval Climate Anomaly and Little Ice Age. Quat Sci Rev 29:2411–2423

    Article  Google Scholar 

  • Luoto TP, Nevalainen L (2009) Larval chaoborid mandibles in surface sediments of small shallow lakes in Finland—implications for palaeolimnology. Hydrobiologia 631:185–195

    Article  Google Scholar 

  • Luoto TP, Nevalainen L (2013) Long-term water temperature reconstructions from mountain lakes with different catchment and morphometric features. Sci Rep 3:2488. doi:10.1038/srep02488

    Article  Google Scholar 

  • Luoto TP, Nevalainen L (2015) Late Holocene precipitation and temperature changes in Northern Europe linked with North Atlantic forcing. Clim Res 66:37–48

    Article  Google Scholar 

  • Luoto TP, Kaukolehto M, Weckström J, Korhola A, Väliranta M (2014) New evidence of warm early-Holocene summers in subarctic Finland based on an enhanced regional chironomid-based temperature calibration model. Quat Res 81:50–62

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from Laurentian Great Lakes. Org Geochem 34:261–289

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2. Physical and Geochemical methodsKluwer Academic Publishers, Dordrecht, pp 239–269

    Chapter  Google Scholar 

  • Mueller DR, Van Hove P, Antoniades D, Jeffries MO, Vincent WF (2009) High Arctic lakes as sentinel ecosystems: Cascading regime shifts in climate, ice cover, and mixing. Limnol Oceanogr 54:2371–2385

    Article  Google Scholar 

  • Nevalainen L (2008) Sexual reproduction in chydorid cladocerans (Anomopoda, Chydoridae) in southern Finland—implications for paleolimnology. PhD dissertation, University of Helsinki

  • Nevalainen L (2011) Intra-lake heterogeneity of sedimentary cladoceran (Crustacea) assemblages forced by local hydrology. Hydrobiologia 676:9–22

    Article  Google Scholar 

  • Nevalainen L, Luoto TP (2012) Faunal (Chironomidae, Cladocera) responses to post-Little Ice Age climate warming in the high Austrian Alps. J Paleolimnol 48:711–724

    Article  Google Scholar 

  • Nevalainen L, Luoto TP, Kultti S, Sarmaja-Korjonen K (2012) Do subfossil Cladocera and chydorid ephippia disentangle Holocene climate trends? Holocene 22:291–299

    Article  Google Scholar 

  • Nevalainen L, Helama S, Luoto TP (2013a) Hydroclimatic variations over the last millennium in eastern Finland disentangled by fossil Cladocera. Palaeogeogr Palaeoclimatol Palaeoecol 378:13–21

    Article  Google Scholar 

  • Nevalainen L, Luoto TP, Kultti S, Sarmaja-Korjonen K (2013b) Spatio-temporal distribution of sedimentary Cladocera (Crustacea: Branchiopoda) in relation to climate. J Biogeogr 40:1548–1559

    Article  Google Scholar 

  • Nevalainen L, Ketola M, Korosi JB, Manca M, Kurmayer R, Koinig K, Psenner R, Luoto TP (2014) Zooplankton (Cladocera) species turnover and long-term decline of Daphnia in two high mountain lakes in the Austrian Alps. Hydrobiologia 722:75–91

    Article  Google Scholar 

  • Perga ME, Desmet M, Enters D, Reyss JL (2010) A century of bottom-up-and top-down driven changes on a lake planktonic food web: A paleoecological and paleoisotopic study of Lake Annecy, France. Limnol Oceanogr 55:803–816

    Article  Google Scholar 

  • Rantala MV, Luoto TP, Weckström J, Perga M-E, Rautio M, Nevalainen L (2015a) Climate controls on the Holocene development of a subarctic lake in northern Fennoscandia. Quat Sci Rev 126:175–185

    Article  Google Scholar 

  • Rantala MV, Luoto TP, Nevalainen L (2015b) Late Holocene changes in the humic state of a boreal lake and their associations with organic matter transport and climate dynamics. Biogeochem 123:63–82

    Article  Google Scholar 

  • Rautio M (1998) Community structure of crustacean zooplankton in subarctic ponds: effects of altitude and physical heterogeneity. Ecography 21:327–335

    Article  Google Scholar 

  • Rautio M, Nevalainen L (2013) Cladocera. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 271–280

    Chapter  Google Scholar 

  • Rautio M, Dufresne F, Laurion I, Bonilla S, Vincent WF, Christoffersen KS (2011) Shallow freshwater ecosystems of the circumpolar arctic. Écoscience 18:204–222

    Article  Google Scholar 

  • Renberg I, Hansson H (2008) The HTH sediment corer. J Paleolimnol 40:655–659

    Article  Google Scholar 

  • Rosén P (2005) Total organic carbon (TOC) of lake water during the Holocene inferred from lake sediments and nearinfrared spectroscopy (NIRS) in eight lakes from northern Sweden. Biogeochem 76:503–516

    Article  Google Scholar 

  • Rosén P, Cunningham L, Vonk J, Karlsson J (2009) Effects of climate on organic carbon and the ratio of planktonic to benthic primary producers in a subarctic lake during the past 45 years. Limnol Oceanogr 54:1723–1732

    Article  Google Scholar 

  • Sarmaja-Korjonen K (2002) Multi-proxy data from Kaksoislammi Lake in Finland: dramatic changes in the late Holocene cladoceran assemblages. J Paleolimnol 28:287–296

    Article  Google Scholar 

  • Sarmaja-Korjonen K (2004) Chydorid ephippia as indicators of environmental change: a new method. Hydrobiologia 526:129–136

    Article  Google Scholar 

  • Schindler DW (2001) The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can J Fish Aquat Sci 58:18–29

    Article  Google Scholar 

  • Shala S, Helmens KF, Luoto TP, Väliranta M, Weckström J, Salonen JS, Kuhry P (2014) Evaluating environmental drivers of Holocene changes in water chemistry and aquatic biota composition at Lake Loitsana, NE Finland. J Paleolimnol 52:311–329

    Google Scholar 

  • Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of subfossil Cladocera from central and northern Europe. Friends of the Lower Vistula Society, Świecie

    Google Scholar 

  • Talbot MR (2001) Nitrogen isotopes in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, physical and geochemical methods, vol 2. Kluwer Academic Press, Dordrecht, pp 401–439

    Chapter  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

  • van Hardenbroek M, Lotter AF, Bastviken D, Duc NT, Heiri O (2012) Relationship between δ13C of chironomid remains and methane flux in Swedish lakes. Freshw Biol 57:166–177

    Article  Google Scholar 

  • van Hardenbroek M, Heiri O, Parmentier FJW, Bastviken D, Ilyashuk BP, Wiklund JA, Hall RI, Lotter AF (2013) Evidence for past variations in methane availability in a Siberian thermokarst lake based on δ13C of chitinous invertebrate remains. Quat Sci Rev 66:74–84

    Article  Google Scholar 

  • Weyhenmeyer GA, Karlsson J (2009) Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures. Limnol Oceanogr 54:2513–2519

    Article  Google Scholar 

  • Wilson CR, Michelutti N, Cooke CA, Briner JP, Wolfe AP, Smol JP (2012) Arctic lake ontogeny across multiple interglaciations. Quat Sci Rev 31:112–126

    Article  Google Scholar 

  • Wooller MJ, Pohlman JW, Gaglioti BV, Langdon P, Jones M, Anthony KMW, Becker KW, Hinrich K-U, Elvert M (2012) Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~ 12,000 years. J Paleolimnol 48:27–42

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Academy of Finland VIOLET project (#287547) and the Doctoral Programme of Biological and Environmental Science of University of Jyväskylä Graduate School for Doctoral Studies. We are grateful to two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liisa Nevalainen.

Additional information

Responsible Editor: E. H. Stanley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevalainen, L., Kivilä, E.H. & Luoto, T.P. Biogeochemical shifts in hydrologically divergent taiga lakes in response to late Holocene climate fluctuations. Biogeochemistry 128, 201–215 (2016). https://doi.org/10.1007/s10533-016-0203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0203-y

Keywords

Navigation