Skip to main content
Log in

Deletion of a KU80 homolog enhances homologous recombination in the thermotolerant yeast Kluyveromyces marxianus

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Targeted gene replacement in the thermotolerant yeast Kluyveromyces marxianus KCTC 17555 has been hampered by its propensity to non-homologous end joining (NHEJ). To enhance homologous recombination (HR) by blocking NHEJ, we identified and disrupted the K. marxianus KU80 gene. The ku80 deletion mutant strain (Kmku80∆) of K. marxianus KCTC 17555 did not show apparent growth defects under several conditions with the exception of exposure to tunicamycin. The targeted disruption of the three model genes, KmLEU2, KmPDC1, and KmPDC5, was increased by 13–70 % in Kmku80∆, although the efficiency was greatly affected by the length of the homologous flanking fragments. In contrast, the double HR frequency was 0–13.7 % in the wild-type strain even with flanking fragments 1 kb long. Therefore, Kmku80∆ promises to be a useful recipient strain for targeted gene manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Banat BM, Nonklang S, Hoshida H, Akada R (2010) Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast 27:29–39

    CAS  PubMed  Google Scholar 

  • Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Banat IM, Nigam P, Marchant R (1992) Isolation of thermotolerant, fermentative yeasts growing at 52 °C and producing ethanol at 45 °C and 50 °C. World J Microbiol Biotechnol 8:259–263

    Article  CAS  PubMed  Google Scholar 

  • Daley JM, Palmbos PL, Wu D, Wilson TE (2005) Nonhomologous end joining in yeast. Annu Rev Genet 39:431–451

    Article  CAS  PubMed  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354

    Article  CAS  PubMed  Google Scholar 

  • Heo P, Yang TJ, Chung SC, Cheon Y, Kim JS, Park JB, Koo HM, Cho KM, Seo JH, Park JC, Kweon DH (2013) Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. J Biotechnol 167:323–325

    Article  CAS  PubMed  Google Scholar 

  • Herrera T, Ulloa M, Fuentes I (1973) Descripción de una especie nueva de Hansenula y una variedad nueva de Candida parapsilosis aisladas del pozol. Bol Soc Mex Micol 7:17–26

    Google Scholar 

  • Hill J, Donald KA, Griffiths DE (1991) DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 19:5791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeong H, Lee DH, Kim SH, Kim HJ, Lee K, Song JY, Kim BK, Sung BH, Park JC, Sohn JH, Koo HM, Kim JF (2012) Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Eukaryot Cell 11:1584–1585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kapitzky L, Beltrao P, Berens TJ, Gassner N, Zhou C, Wuster A, Wu J, Babu MM, Elledge SJ, Toczyski D, Lokey RS, Krogan NJ (2010) Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Mol Syst Biol 6:451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kooistra R, Hooykaas PJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781–792

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmar A, Otto C, Holz M, Werner S, Hubner L, Barth G (2013) Increased homologous integration frequency in Yarrowia lipolytica strains defective in non-homologous end-joining. Curr Genet 59:63–72

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Kim JS, Heo P, Yang TJ, Sung YJ, Cheon Y, Koo HM, Yu BJ, Seo JH, Jin YS, Park JC, Kweon DH (2013) Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Appl Microbiol Biotechnol 97:2029–2041

    Article  CAS  PubMed  Google Scholar 

  • Maassen N, Freese S, Schruff B, Passoth V, Klinner U (2008) Nonhomologous end joining and homologous recombination DNA repair pathways in integration mutagenesis in the xylose-fermenting yeast Pichia stipitis. FEMS Yeast Res 8:735–743

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D348–D352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martins DB, De Souza CG Jr, Simoes DA, de Morais MA Jr (2002) The beta-galactosidase activity in Kluyveromyces marxianus CBS6556 decreases by high concentrations of galactose. Curr Microbiol 44:379–382

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi T, Sadaie M, Kanoh J, Ishikawa F (2003) Telomeric DNA ends are essential for the localization of Ku at telomeres in fission yeast. J Biol Chem 278:1924–1931

    Article  CAS  PubMed  Google Scholar 

  • Naatsaari L, Mistlberger B, Ruth C, Hajek T, Hartner FS, Glieder A (2012) Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS ONE 7:e39720

    Article  PubMed Central  PubMed  Google Scholar 

  • Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74:7514–7521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palmbos PL, Daley JM, Wilson TE (2005) Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining. Mol Cell Biol 25:10782–10790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pastink A, Eeken JC, Lohman PH (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481:37–50

    Article  PubMed  Google Scholar 

  • Rouwenhorst RJ, Visser LE, Van Der Baan AA, Scheffers WA, Van Dijken JP (1988) Production, distribution, and kinetic properties of inulinase in continuous cultures of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54:1131–1137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saraya R, Krikken AM, Kiel JA, Baerends RJ, Veenhuis M, van der Klei IJ (2012) Novel genetic tools for Hansenula polymorpha. FEMS Yeast Res 12:271–278

    Article  CAS  PubMed  Google Scholar 

  • Snoek IS, van der Krogt ZA, Touw H, Kerkman R, Pronk JT, Bovenberg RA, van den Berg MA, Daran JM (2009) Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet Biol 46:418–426

    Article  CAS  PubMed  Google Scholar 

  • Van Dyck E, Stasiak AZ, Stasiak A, West SC (1999) Binding of double-strand breaks in DNA by human Rad52 protein. Nature 398:728–731

    Article  PubMed  Google Scholar 

  • Verbeke J, Beopoulos A, Nicaud JM (2013) Efficient homologous recombination with short length flanking fragments in Ku70 deficient Yarrowia lipolytica strains. Biotechnol Lett 35:571–576

    Article  CAS  PubMed  Google Scholar 

  • Walker JR, Corpina RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412:607–614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a grant from the Korea Ministry of Education and Science Technology (Global Frontier Program for the Intelligent Synthetic Biology No. NRF-2013M3A6A8073554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Ah Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choo, J.H., Han, C., Kim, JY. et al. Deletion of a KU80 homolog enhances homologous recombination in the thermotolerant yeast Kluyveromyces marxianus . Biotechnol Lett 36, 2059–2067 (2014). https://doi.org/10.1007/s10529-014-1576-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1576-4

Keywords

Navigation