Skip to main content
Log in

Human dermal fibroblast proliferation activity of usimine-C from Antarctic lichen Ramalina terebrata

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Type I collagen is the major structural protein in dermis and its presence is used to monitor skin cell proliferation and aging. Recently, novel usimine compounds have been found in the Antarctic lichen Ramalina terebrata. In the present study, usimine-C induced cell proliferation of human dermal fibroblast, CCD-986SK, up to 1.6-fold after treating with 90 μg/ml for 48 h. Type I procollagen synthesis was significantly increased 1.3-fold, 3-fold, and 5-fold after treating with 0.14, 0.72, and 3.6 μg usimine-C/ml for 24 h, respectively, whereas no significant increase in type I procollagen was observed after treating with usimine-A or -B. Usimines are usnic acid derivatives. Considering that the difference among the derivatives is a side chain, the proliferation activity may be related to this side chain, triggering an internal signal for type I procollagen expression. Further studies still remain to clarify the signaling pathways for the type I procollagen induction, which is activated by usimine-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Affinito P, Palomba S, Sorrentino C et al (1999) Effects of postmenopausal hypoestrogenism on skin collagen. Maturitas 33:239–247

    Article  CAS  PubMed  Google Scholar 

  • Castelo-Branco C, Duran M, Gonzalez-Merlo J (1992) Skin collagen changes related to age and hormone replacement therapy. Maturitas 15:113–119

    Article  CAS  PubMed  Google Scholar 

  • Castelo-Branco C, Pons F, Gratacos E et al (1994) Relationship between skin collagen and bone changes during aging. Maturitas 18:199–206

    Article  CAS  PubMed  Google Scholar 

  • Chanvorachote P, Pongrakhananon V, Luanpitpong S et al (2009) Type I pro-collagen promoting and anti-collagenase activities of Phyllanthus emblica extract in mouse fibroblasts. J Cosmet Sci 60:395–403

    PubMed  Google Scholar 

  • Choi HS, Yim JH, Lee HK et al (2009) Immunomodulatory effects of polar lichens on the function of macrophages in vitro. Mar Biotechnol (NY) 11:90–98

    Article  CAS  Google Scholar 

  • Cutroneo KR (2007) TGF-beta-induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring. Wound Repair Regen 15(Suppl 1):S54–S60

    Article  PubMed  Google Scholar 

  • Kang SK, Kim KS, Byun YS et al (2006) Effects of Ulmus davidiana planch on mineralization, bone morphogenetic protein-2, alkaline phosphatase, type I collagen, and collagenase-1 in bone cells. In Vitro Cell Dev Biol Anim 42:225–229

    Article  PubMed  Google Scholar 

  • Lee J, Jung E, Huh S et al (2007) Panax ginseng induces human Type I collagen synthesis through activation of Smad signaling. J Ethnopharmacol 109:29–34

    Article  CAS  PubMed  Google Scholar 

  • Lovell CR, Smolenski KA, Duance VC et al (1987) Type I and III collagen content and fibre distribution in normal human skin during ageing. Br J Dermatol 117:419–428

    Article  CAS  PubMed  Google Scholar 

  • Maheux R, Naud F, Rioux M et al (1994) A randomized, double-blind, placebo-controlled study on the effect of conjugated estrogens on skin thickness. Am J Obstet Gynecol 170:642–649

    CAS  PubMed  Google Scholar 

  • Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  CAS  PubMed  Google Scholar 

  • Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754

    Article  CAS  PubMed  Google Scholar 

  • Oikarinen A (2000) Systemic estrogens have no conclusive beneficial effect on human skin connective tissue. Acta Obstet Gynecol Scand 79:250–254

    Article  CAS  PubMed  Google Scholar 

  • Phillips TJ, Demircay Z, Sahu M (2001) Hormonal effects on skin aging. Clin Geriatr Med 17:661–672 vi

    Article  CAS  PubMed  Google Scholar 

  • Piek E, Heldin CH, Ten Dijke P (1999) Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 13:2105–2124

    CAS  PubMed  Google Scholar 

  • Qu L, Abe M, Yokoyama Y et al (2006) Effects of 17beta-estradiol on matrix metalloproteinase-1 synthesis by human dermal fibroblasts. Maturitas 54:39–46

    Article  CAS  PubMed  Google Scholar 

  • Sator PG, Schmidt JB, Sator MO et al (2001) The influence of hormone replacement therapy on skin ageing: a pilot study. Maturitas 39:43–55

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JB, Binder M, Macheiner W et al (1994) Treatment of skin ageing symptoms in perimenopausal females with estrogen compounds. A pilot study. Maturitas 20:25–30

    Article  CAS  PubMed  Google Scholar 

  • Schmierer B, Hill CS (2007) TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8:970–982

    Article  CAS  PubMed  Google Scholar 

  • Seo C, Sohn JH, Park SM et al (2008) Usimines A-C, bioactive usnic acid derivatives from the Antarctic lichen Stereocaulon alpinum. J Nat Prod 71:710–712

    Article  CAS  PubMed  Google Scholar 

  • Seo C, Sohn JH, Ahn JS et al (2009) Protein tyrosine phosphatase 1B inhibitory effects of depsidone and pseudodepsidone metabolites from the Antarctic lichen Stereocaulon alpinum. Bioorg Med Chem Lett 19:2801–2803

    Article  CAS  PubMed  Google Scholar 

  • Son ED, Lee JY, Lee S et al (2005) Topical application of 17beta-estradiol increases extracellular matrix protein synthesis by stimulating tgf-Beta signaling in aged human skin in vivo. J Invest Dermatol 124:1149–1161

    Article  CAS  PubMed  Google Scholar 

  • Surazynski A, Jarzabek K, Haczynski J et al (2003) Differential effects of estradiol and raloxifene on collagen biosynthesis in cultured human skin fibroblasts. Int J Mol Med 12:803–809

    CAS  PubMed  Google Scholar 

  • Tanaka H, Yamaba H, Kosugi N et al (2008) Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-beta/Smad signaling suppression. Arch Dermatol Res 300(Suppl 1):S57–S64

    Article  PubMed  Google Scholar 

  • Uitto J (1993) Biology of dermal cells and extracellular matrix. In: Fitzpatrick T, Eisen A, Wolff K, Freedberg I, Austen K (eds) Dermatology in General Medicine. McGraw-Hill, New York, pp 299–314

    Google Scholar 

Download references

Acknowledgments

This work was supported by KOPRI grant No. PE09050. The authors wish to thank the Bio-FD&C for a helpful comment to maintain the cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joung Han Yim.

Additional information

Sung Gu Lee and Hye Yeon Koh have contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 787 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.G., Koh, H.Y., Oh, H. et al. Human dermal fibroblast proliferation activity of usimine-C from Antarctic lichen Ramalina terebrata . Biotechnol Lett 32, 471–475 (2010). https://doi.org/10.1007/s10529-009-0191-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-0191-2

Keywords

Navigation